УтундрийНе, может я и чушь сморозил, но что там сложного то? Можно же прямым вычислением. Напишу специально подробно (для
zxcvSV)
Берём распределение Максвелла
![$$\[d\omega (\vec v) = {(\frac{\alpha }{\pi })^{\frac{3}{2}}}{e^{ - \alpha (v_x^2 + v_y^2 + v_z^2)}}d{v_x}d{v_y}d{v_z}\]$$ $$\[d\omega (\vec v) = {(\frac{\alpha }{\pi })^{\frac{3}{2}}}{e^{ - \alpha (v_x^2 + v_y^2 + v_z^2)}}d{v_x}d{v_y}d{v_z}\]$$](https://dxdy-01.korotkov.co.uk/f/8/d/1/8d1ebaa80d0f6abec73fca878ad7368a82.png)
![$$\[\alpha = \frac{m}{{2kT}}\]$$ $$\[\alpha = \frac{m}{{2kT}}\]$$](https://dxdy-01.korotkov.co.uk/f/c/f/5/cf5e7d5f0ea6004d0e288c9d0ecff18f82.png)
Оно распадается на независимые
![$$\[d\omega ({v_x}) = {(\frac{\alpha }{\pi })^{\frac{1}{2}}}{e^{ - \alpha v_x^2}}d{v_x}\]$ $$\[d\omega ({v_x}) = {(\frac{\alpha }{\pi })^{\frac{1}{2}}}{e^{ - \alpha v_x^2}}d{v_x}\]$](https://dxdy-01.korotkov.co.uk/f/0/8/5/0858f3f6ab1e87e650804fed69d13a5282.png)
(и такие же по
![$\[y,z\]$$ $\[y,z\]$$](https://dxdy-04.korotkov.co.uk/f/3/3/9/33928d5cf1aefad548a7df250b33a4c082.png)
соотв.)
Тогда
![$$\[\left\langle {v_x^2} \right\rangle = \left\langle {v_y^2} \right\rangle = \left\langle {v_z^2} \right\rangle = \int\limits_{ - \infty }^\infty {{{(\frac{\alpha }{\pi })}^{\frac{1}{2}}}{\xi ^2}{e^{ - \alpha {\xi ^2}}}d\xi } = - {(\frac{\alpha }{\pi })^{\frac{1}{2}}}\frac{\partial }{{\partial \alpha }}\int\limits_{ - \infty }^\infty {{e^{ - \alpha {\xi ^2}}}d\xi } = - {(\frac{\alpha }{\pi })^{\frac{1}{2}}}\frac{\partial }{{\partial \alpha }}{(\frac{\pi }{\alpha })^{\frac{1}{2}}} = \sqrt {\frac{\alpha }{\pi }} \cdot \frac{1}{2}\sqrt {\frac{\pi }{{{\alpha ^3}}}} = \frac{1}{{2\alpha }} = \frac{{kT}}{m}\]$$ $$\[\left\langle {v_x^2} \right\rangle = \left\langle {v_y^2} \right\rangle = \left\langle {v_z^2} \right\rangle = \int\limits_{ - \infty }^\infty {{{(\frac{\alpha }{\pi })}^{\frac{1}{2}}}{\xi ^2}{e^{ - \alpha {\xi ^2}}}d\xi } = - {(\frac{\alpha }{\pi })^{\frac{1}{2}}}\frac{\partial }{{\partial \alpha }}\int\limits_{ - \infty }^\infty {{e^{ - \alpha {\xi ^2}}}d\xi } = - {(\frac{\alpha }{\pi })^{\frac{1}{2}}}\frac{\partial }{{\partial \alpha }}{(\frac{\pi }{\alpha })^{\frac{1}{2}}} = \sqrt {\frac{\alpha }{\pi }} \cdot \frac{1}{2}\sqrt {\frac{\pi }{{{\alpha ^3}}}} = \frac{1}{{2\alpha }} = \frac{{kT}}{m}\]$$](https://dxdy-02.korotkov.co.uk/f/5/d/2/5d2616cd05847b52d5dab5e505ed0cf882.png)
Теперь перейдём в сферическую систему
![$$\[d\omega (\vec v) = {(\frac{\alpha }{\pi })^{\frac{3}{2}}}{e^{ - \alpha {v^2}}}{v^2}{\sin ^2}\theta dvd\theta d\varphi \]$$ $$\[d\omega (\vec v) = {(\frac{\alpha }{\pi })^{\frac{3}{2}}}{e^{ - \alpha {v^2}}}{v^2}{\sin ^2}\theta dvd\theta d\varphi \]$$](https://dxdy-04.korotkov.co.uk/f/b/9/0/b90fea803b80a4583f86c301068d1db382.png)
и проинтегрируем по углам
![$$\[d\omega (v) = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}{e^{ - \alpha {v^2}}}{v^2}dv\]$$ $$\[d\omega (v) = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}{e^{ - \alpha {v^2}}}{v^2}dv\]$$](https://dxdy-01.korotkov.co.uk/f/c/7/5/c7589561f38a28194cd6601c80fcb4f982.png)
Теперь легко сосчитать и средний квадрат скорости
![$$\[\left\langle {{v^2}} \right\rangle = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}\int\limits_0^\infty {{e^{ - \alpha {v^2}}}{v^4}dv} = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}\frac{{{\partial ^2}}}{{\partial {\alpha ^2}}}\int\limits_0^\infty {{e^{ - \alpha {v^2}}}dv} = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}\frac{{{\partial ^2}}}{{\partial {\alpha ^2}}}[\frac{1}{2}{(\frac{\pi }{\alpha })^{\frac{1}{2}}}] = 4\pi \sqrt {\frac{{{\alpha ^3}}}{{{\pi ^3}}}} \cdot \frac{3}{8}\sqrt {\frac{\pi }{{{\alpha ^5}}}} = \frac{3}{{2\alpha }}\]$$ $$\[\left\langle {{v^2}} \right\rangle = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}\int\limits_0^\infty {{e^{ - \alpha {v^2}}}{v^4}dv} = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}\frac{{{\partial ^2}}}{{\partial {\alpha ^2}}}\int\limits_0^\infty {{e^{ - \alpha {v^2}}}dv} = 4\pi {(\frac{\alpha }{\pi })^{\frac{3}{2}}}\frac{{{\partial ^2}}}{{\partial {\alpha ^2}}}[\frac{1}{2}{(\frac{\pi }{\alpha })^{\frac{1}{2}}}] = 4\pi \sqrt {\frac{{{\alpha ^3}}}{{{\pi ^3}}}} \cdot \frac{3}{8}\sqrt {\frac{\pi }{{{\alpha ^5}}}} = \frac{3}{{2\alpha }}\]$$](https://dxdy-03.korotkov.co.uk/f/6/f/5/6f5ec94fce3625be17f070bf9a2eee3682.png)
Как видим,
![$$\[\left\langle {v_x^2} \right\rangle = \frac{{\left\langle {{v^2}} \right\rangle }}{3}\]$$ $$\[\left\langle {v_x^2} \right\rangle = \frac{{\left\langle {{v^2}} \right\rangle }}{3}\]$$](https://dxdy-04.korotkov.co.uk/f/f/1/6/f162bd4e67868560459766f7bf3d61ff82.png)