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ABSTRACT. At the 13th Czech and Slovak Conference in Number Theory,

L. Szalay showed that the Diophantine equation (2

n

� 1)(3

n

� 1) = x

2

has

no solutions in positive integers n and x . Szalay's proof used the evaluation

of certain Jacobi symbols to arrive at the result. The purpose of this paper

is to generalize the result of Szalay by proving that the Diophantine equation

(2

n

� 1)(3

m

� 1) = x

2

has no solutions in positive integers n;m; x . We further

discuss the solvability of the more general equation (x

n

� 1)(y

m

� 1) = z

2

.

At the 13th Czech and Slovak Conference in Number Theory, L. S z a l a y [3]

showed that the Diophantine equation

(2

n

� 1)(3

n

� 1) = x

2

has no solutions in positive integers n and x . Szalay's proof used the evaluation

of certain Jacobi symbols to arrive at the result. The purpose of this paper is

to generalize the result of Szalay, and moreover provide a very simple solution.

We conclude by making some remarks on the solvability of the more general

equation given in the title.

Our main result is the following.

Theorem 1. The Diophantine equation

(2

n

� 1)(3

m

� 1) = x

2

has no solutions in positive integers n , m , and x .

P r o o f . From the equation in the theorem it follows that there is a square-

free integer d � 1, and nonzero integers y and z , for which

2

n

� 1 = dy

2

; 3

m

� 1 = dz

2

:
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If d = 1, then m must be odd, for otherwise 3

m

and z

2

would be consecutive

integers which are squares, contradicting the fact that z is nonzero. But for m

odd, 3

m

� 1 � 2 (mod 4), which shows that d > 1.

From the equation 2

n

� 1 = dy

2

; we have that d is odd. Therefore, the

equation 3

m

�1 = dz

2

shows that 3

m

�1 is properly divisible by an even power

of 2. It follows from the binomial theorem that m is even. We now deal with

the cases n odd and n even separately.

If n is odd, then 2

n

�1 � 1 (mod 3), and it follows that d � 1 (mod 3). But

from the equation 3

m

� 1 = dz

2

, it follows that d � 2 (mod 3), a contradiction.

We thus conclude that n is even.

Let "

d

= T+U

p

d denote the minimal solution in positive integers to the Pell

equation X

2

� dY

2

= 1, and T

k

+U

k

p

d =

�

T +U

p

d

�

k

for k � 1. Properties

of solutions to Pell equations can be found in [2]. Since n is even, we have that

2

n=2

+ y

p

d = T

r

+U

r

p

d

for some odd positive integer r , since T

k

is odd for even values of k . This implies

that T

k

is even for all odd positive integers k . From the equation 3

m

�1 = dz

2

,

and the fact that m is even, we conclude that

3

m=2

+ z

p

d = T

s

+ U

s

p

d

for some positive even integer s . Let s = 2t , then

3

m=2

= T

2t

= 2T

2

t

� 1 ;

fromwhich it follows that T

2

t

� 2 (mod 3), which is not possible. This completes

the proof of Theorem 1.

Remarks on the general equation (x

n

� 1)(y

m

� 1) = z

2

.

In Theorem 1 we were able to solve the particular equation (2

n

�1)(3

m

�1) =

x

2

. It would of course be of interest to prove �niteness results for general equa-

tions of this form. In particular, it would be interesting to prove a similar result

for any equation of the form

(x

n

� 1)(y

m

� 1) = z

2

;

as there is very little known. There are examples of such equations with solutions,

such as (2

5

� 1)(5

3

� 1) = 62

2

and (13

4

� 1)(239

4

� 1) = 9653280

2

:

We �nish the paper by raising questions about equations of this kind.

1. Let a and b be �xed positive integers. Under the assumption of the abc-con-

jecture, it can be shown that the equation

(a

n

� 1)(b

n

� 1) = x

2
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� 1)(y

m

� 1) = z

2

has only �nitely many solutions (n; x) . Can this result be proved without the

hypothesis of the abc-conjecture?

2. Again with a and b �xed positive integers, are there in�nitely many pairs of

integers (n;m) for which there is an integer x with (a

n

� 1)(b

m

� 1) = x

2

?

3. If n > 2 is a �xed positive integer, are there only �nitely many integers x

and y for which (x

n

�1)(y

n

�1) = z

2

for some integer z? The only known case

is n = 4, which has recently been solved by J. H. E. C o h n in [1]. His result

shows that the only solution for n = 4 is (13

4

� 1)(239

4

� 1) = 9653280

2

.
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