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thus having the ‘right’ behaviour prescribed at 1 and oc. There is a restric-
tion on the location of the singularity a; it is supposed that a ¢ [1, 00) and
in some parts of the analysis it seems necessary that |a| < 1, so that it is
hard to relate this paper to the situation which we have taken as standard
in this monograph. The series obtained are, in fact, E-type I series, as was
pointed out by Erdélyi himself in his 1944 paper.

(E} Kalnins and Miller (1991)

This paper is concerned only with the expansion of Heun polynomials,
but the treatment is radically different from that used here, and is based
on group-theoretic methods and the technique of separation of variables on
the n-sphere. The results include the expansion of a product of two Heun
polynomials in terms of products of Jacobi polynomials.

O

Orthogonality relations

51 Survey

Three types of orthogonality relation are known for solutions of Heun's’
equation. Such relations, as we would expect, hold among solutions satis- .
fying various boundary conditions. o

- (a) For Heun functions, relative to a pair of singularities s, s, there

hold what may conveniently be called ‘single’ orthogonality relations, of the -

familiar kind associated with Sturm-Liouville eigenvalue problems. Two
such Heun functions must belong to the same class (I to IV) but be dis- "

tinguished by belonging, in general, to different values of the 4CCessory.

parameter g. The path of integration is, generally, a Pochhammer double:
loop contour about s1, sy, which can sometimes be reduced to a simple
contour joining sy, s3. These will be discussed in section 5.9.

{b) For Heun polynomials (which, since they are also Heun functions,
naturally also satisfy the relations described in (a)) there exist, also, ‘double’
orthogonality relations. The polynomials are of the same class (I to VIII)
but are either of different degrees, and hence associated with different val-
ues of the parameter «, or of the same degree but associated with different
values of the parameter ¢. The orthogonality applies to products of iden-
tical polynomials in two variables, and the integration is two-dimensional
along paths about, or joining, two pairs of singularities. These will be
discussed in section 5.3. '

These relationships are of the type associated with two-parameter eigen-

. value problems, described in Arscott (1964b). For Heun'’s equation itself,

the relations were first given by Sleeman (1965).

(c) For circuit-multiplicative solutions, there are bi-orthogonal relations,

: - in which the path of integration is a circuit surrounding a pair of singular-

ities. These are described in Schmids (1979, para. 2.2), and for particulars
the reader is referred to that paper.
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The importance of orthogonality relations lies mainly in the fact that
they provide — formally, at least - the possibility of expanding a more or
less arbitrary function in a series of the orthogonal functions. The single-
orthogonality relations of section 5.9 lead to such expansions of a single
function as a series of Heun functions, while the double-orthogonality rela-
tions of section 5.3 open the way to expansions of a function of two variables

in terms of products of Heun polynomials.

5.2 Single-orthogonality relations for Heun functions

We write Heun’s equation in an operator form,

M,y =qy (5.2.1)
where
d* d
M, = z(zml)(zwa)—&?ﬂ'y(z 1)z —a) +b2(z —a) + ez(z — 1)]«(E+aﬁz
(5.2.2)
We also write
wiz) =27z - 1)z~ a) ! (5.2.3)

for the weight function w(z) which occurs in the orthogonality relations,
and

p(z):=2"{z — 1)%(z — a)* (5.2.4)

The operator M, in (5.2.2) is not self-adjoint. We therefore introduce
the operator L, given by

L, = w(z)M, (5.2.50)

Hence

L=% (z“’(z— (= - a)ﬁgz) +afat(z 1)z~ o)t (5:25)

and Heun’s equation then takes the self-adjoint form
L,y =quw (Z)y
corresponding to different values g1,qz of ¢, so that

Loy = quw(y, Loy = qu(z)yz
We multiply equations (5.2.7) by y2, %1 respectively, subtract, and int
grate over a contour C, giving S

(5.2. 6) .write
We now follow the usual procedure. Let 1,2 be solutions of (526)
: -where

(5.2 - This problem was considered briefly by Lambe and Ward (1934,--1)3_1}55;_

12:31-2,33) for the case when the Heun functions reduce to polynomials;:

5.2. Single-orthogonality relations for Heun funct’igné 6

(g2 —aq1) [g'wylyzdz = [P(Z) (1192 — y;yz)]g (52

We now make three restrictive assumptions, two of which W111 "sh.d}t] ”
be removed. e Ity

(i) a ¢ [0,1]. :

(ii) y1(2), y2(z) are Heun functions of class relative to 0,1, cdrrééﬁo'n’&
ing to different values of g. '-

(iii) Re v > 0, Re 6 > 0.

TheI.} Yi (z‘), yi(z) are finite at z = 0,1, so if the contour U is ta.l:{é.n:ﬁ.és-.
the .stra1ght line segment [0, 1}, the term on the right hand side of (5.2':.8")".'
vanishes, and since, by hypothesis, g5 — g2 # 0, we have L

L L
fﬂ w(z)y1(2)ya(z)dz =0 (5.2.9)
. To remove the restriction (iii), we replace the straight line contour [0 1}
by a Pochhammer loop contour £ (see, for example, Whittaker and Wats,dn3:
1940, para. 12.43) about the points 0,1. R
The case when the y;{z) are Heun functions of class II, III, or IV (they
must be of the same class) is dealt with simply by making the appropriate
transformation {TII), {TIII), or (TIV) from (2.2.4), and applying the same -
reasoning: it is found that the same orthogonality relation holds, i.e.” o

fr,zl""(z — 1)1z — a) "y (2)ya(e)dz = 0 (5210)

where e
yi(2) = (0, )HfNam,,2), i=1.2 (5.211)

in the notation of (3.5.2). i

This removes restriction (ii}.

Normalization

When the functions yi,72 coincide, of course, the integral no loﬁgét__
vanishes, and it is a matter of some interest to compute its value. Let us

O 1= /L w(z)fym(2)*dz | (5212)
¥m(2) = (O, DHF (grms 2) .

d more fully by Erdélyi {1944, para. 9) who derived an expression for
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8,, from the expansion of y(z) as an E-type 11 series of hypergeometric
functions. Lambe and Ward showed that, with certain restrictions on the
parameters, 8, # 0. When this property holds, we have an alternative
method for nermalizing Heun functions of a given class, associated with
a given pair of singularities, in place of the convention adopted in (3.3.5),
that the leading coefficient in the power-series expansion should be 1. We
could, instead, multiply our Heun function by an appropriate constant so
that 8, = 1. For theoretical studies, this may well be more convenient,
and parallels the convention often used for other higher special functions.

Orthogonality over other intervals

The discussion above relates to a pair of Heun functions relative to
the singularities 0,1. The same argument camn, of course, be applied to a
pair of Heun functions relative to any other two singularities, the path of
integration being replaced by & corresponding Pochhammer loop contour
about those singularities.

Formal expansion as a series of Heun functions

The orthogonality theorem given above leads, of course, to the formal
Sturm-Liouville type of expansion of a more or less arbitrary function as
a series of Heun functions. If we assume that f(z) can be expressed by a
series

1= em ym(2) (5.2.13)
0
then from (5.2.11), (5.2.12),
m = Om " ]f(z)ym(z)w{z)dz (5.2.14)
L

The validity of such expansions, except in so far as it is covered by
general Sturm-Liouville theory, does not appear to have been specifically
investigated.

5.3 Double-orthogonality relations for Heun polynomials

The single-orthogonality relations described in section 5.2 are of a well-
known type, which occur in very many contexts. The double-orthogonality
relations, which we now describe, are much less familiar, and arise essen-

tially only in the context of two-parameter problems. We have such a
sitnation here, when we consider Heun’s equation with the requirement; -
that a solution be a polynomial — that is to say, belonging to one of the
eight types of such solutions described in section 3.6. We recall that such
solutions exist only when one of the parameters «, 3 has one of a set of spe-
cial values. According to the class, one of these parameters must be such’

5.3. Double-orthogonality relations for Heun polyno.n.i;e.zls:

that the corresponding quantity in the fourth or fifth column of the tab}
in (3.6.2) must be a negative integer or zero. For convenience, we suppo .
that it is o which has this property, with 2 being determined éniy thr(?ﬁ"h
the relation o 4+ 4+ 1 = v + 6 + e. For the existence of such a soiiiﬁiog
we require also that g have one of a finite number of characteristic values
Considering, in particular, polynomials of class 1, we must have « =
n=20,1,2,..., and there are generally n+ 1 corresponding values of q. 'We -
have thus two parameters to be specified. i

The principal result is as follows:

. x e
Let yy := H p:(n ,)m1 and yp = H p,(,ff,)m be Heun polynomials of the sane .

class (X), where X € {LII,... VIII}; that is, Heun polynomials of the sam
class, but of different degrees, or else of the same degree but corres'pbhdiﬁé"'
to different values of the accessory parameter g. For this, we must have.
either ny # na or my # mgy, or both, that is 5

1731 "'n2|+ im; “m2| #£0

~ Let W(s,t) denote the weight function

Wis 1) i= (s — sty (s = )t - D) (s —a)e —a)F 531
Let e i

L, L
be Pochhammer loop contours about two distinct pairs of singularitiés:' o
{01, {0}, {1,a} (5.32)
Then n
/,:/ , y1(s)yr (t)ya(s)ya ()W (s, t)dsdt = 0 . (333)

. The proof of this is somewhat lengthy, but follows the general lines used .
in Arscott {1964b, para. 3), and will therefore be omitted. It is gi\'ren--iﬁ.
full in Sleeman (1965). - e

We must now consider the value of the integral on the left of (5.3.3)
when the two functions y; coincide, say i

() = 12(2) = Vo (2} = HPEA() (5.3.4)

Then in general the value of the integral is non-zero; care must be taken
over the contours of integration, since s lies on £’ and ¢ on L, and we st
ensure that the factor s — ¢ which occurs in the weight function W(s,t)
does not vanish, except possibly on a set of measure 0. In the commorilff
occurring situation where a € (1,00), we could take £ as a loop abotit:0;
and 1, and £’ a loop about 1 and g, so that s—tis real and negative except
at a finite number of points. S
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Let us write
/ / Yn.m{S o, m{t)]* W (s, t)dsdt (5.3.5)

Then another possible normalization for Heun polynomials would be to
specify that the constant implicit in their construction should be so chosen

that ¢y m = 1.

Formal ezpansion of o symmetric function of two variables in a double
series of Heun polynomials

These results lead to the possibility of a formal expansion of a more or
less arbitrary symmetric function of two variables as a double series.
Assume a function F(s,t) is expressible as

o
F(s,t) = Z ch,myn,m(s)yn,m(t) {(5.3.6)
n=0m
where summation over m is finite, depending on the number of linearly
independent polynomial solutions with a = —n; generally, the summation

will run from m = 0 to n. .
Then formally, from the relations (5.3.3), (5.3.5), the coefficients in the
series are given by

Caym = ($rm) " /;: fﬁ J F(3,)tn,m(8)Ynm(t)dsdt (5.3.7)

This analysis, it should be stressed, is only formal, and space prevents
any discussion of the general validity of such an expansion.

- such formulae, there are integral equations satisfied by solutions of Héi'm g
‘equation, and integral relationships expressing one solution in terms of :

6

Integral equations and integral relations

6.1 Survey

Except in some trivial cases, no example has been given of a solution of
Heun’s equation expressed in the form of a definite integral or contour
integral involving only functions which are, in some sense, simpler: It
may be reasonably conjectured that no such expressions exist. In place of

another.
There are two kinds of relations to be considered:

{a) Linear relations, including Fredholm integral equations of th‘e'sec'c‘sﬁd‘_--'
kind. The key fact here is that if y(z) is a solution of Heun’s equation;:
satisfying certain conditions, while the kernel K(z,t) and the contour ¢
are appropriately chosen, the function o

V() = [G Kz, y(tw(t)dt (s;__:;f.l

is also a solution of Heun’s equation (K, the kernel, has to be chosen'to 7
satisfy a certain partial differential equation, while w is a weight function): .
If K and C are chosen so that Y (2) is necessarily a multiple of y(z) then
(6.1.1) becomes an integral equation. o

(b) Non-linear relations, involving the integral of a product of two solu
tions in different variables. These are sometimes known as Malurkar-type
integral relations, after their first occurrence in connection with ellipsoida.li-.
wave functions. :

The key result in this connection is that if y{z)} is a solution of Heun’
equation, the function H{z, s,t) a solution of a certain partial differential
equation in z, s, t, w(s,t) a we1ght function, and the contours C’;, C’
appropriately chosen, then -

ve)= [ 1 / H (e, Oyl s (612)
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is also a solution of Heun’s equation. With appropriate choices of H, C},
C, Y(z) may be a multiple of y{z), in which case we have a non-linear
integral equation for ¥(z).

The first work on integral equations for Heun functions was that of
Lambe and Ward (1934), on equations of type (6.1.1), considering only
Heun polynomials, This was developed by Erdélyi (1942b) who extended
the theory to solutions which are not polynomials. Integral relations, as dis-
tinct from integral equations, were not considered. This topic is discussed
in section 6.2.

Integral equations of type (6.1.2) were considered by Sleeman (1968),
and this work will be described in section 6.3.

Two papers dealing with these topics, each in a wider context, are (a)
Arscott (1964b), which is concerned with general two-parameter eigenvalue
problems, and (b) Schmidt and Wolf {1979) which utilizes the concept of
simultaneous separability in different coordinate systems.

Sleeman (1969) considered a slightly different topic, and obtained rep-
resentations for solutions of Heun’s equation in the form of Barnes-type
integrals (compare Whittaker and Watson 1940, 14.5, 16.4) in which the
integrand is a somewhat complicated series involving the coefficients in the
power series (3.4.1).

6.2 Linear integral equations and relations
We write Heun's equation (1.1.1) as

M.y =gy (6.2.1)

where M, is as defined in {5.2.2), but since it will here be applied to
functions of more than one variable, it is convenient to regard it as a partial
differential operator

M, = 2(z—1}(z- a) +[’y(z 1)(z—a )+6z(z—a)+ez(z—1)]%+aﬁz

(6.2.2)

We also write
w(z) =27 (z— 1)z - a) ! (6.2.3)
p(z) = 2"(z — 1%z —a)" (6.2.4)

as in section 5.2.
Then the principal result is as follows. Let
(i) y(2) be a solution of Heun’s equation (6.2.1),
(i1} K(z,%) satisfy the paxtial differential equation

6.2. Linear integral equations and relatio

(M, ~ MK (2,) = 0

i.e.
) (St - =) =0

Then Y{z)}, defined by
_ f K y(tw(t)dt
C

is a solution of Heun’s equation (1.1.1), provided the integral exists and, if
singular, converges uniformly with respect to z in an appropriate domam
The three (interconnected) problems which now arise are
(1) finding solutions of the partial differential equation (6.2.5),
(ii) finding a suitable contour C such that (6.2.6) is satisfied,
(iii) identifying the resulting function Y (z).

Problem (iii) must be explained further. Essentially, the character o
Y () will depend on the character of K(z,t) as a function of z, This ma;
be shown, for instance, by its being a polynomial in z, or by correspdﬂd‘iﬁg
to a particular local solution. In this way it may often be established tha
Y (z) is a (non-zero) multiple of y(z), in which case (6.2.7) becomes a linea
integral equation for y{z). BN

On the other hand, it may be that Y (z) is a different solution, possibly
valid in a different region of the z-plane from y(z), thus relating two distinet
solutions of Heun’s equation, so that we have an integral relation. It shéuld
be noted that K (z,t) is generally a simpler function of z than is y(z), so thal
such integral relations may be useful, for instance, in finding a.symptotl'
behaviour of Y (z) either with respect to the variable z or with respect:to
a variable parameter. This possibility has been extensively exploited for -
solutions, for example of Mathieu’s and Lamé’s equations, but does n
seem to have been significantly explored for Heun’s equation.

Finally, we must not ignore the possibility that Y(z} is the ldenticaily
zero solution. Care must be taken to exclude this possibility before claumng
the practical validity of an integral equation or relation. :

The papers of Lambe and Ward and of Erdélyi are concerned prlman
with the problem of finding suitable kernels K(z,t) satisfying (6.2.5).

It should be noted that (6.2.5) does not involve the accessory parameter _
g, so that although it is, of course, satisfied by a product K (z,t) = y(z)y(t)
where y(z) is a solution of (6.2.1), the power of the method consists i
finding simpler K(z,1). ER
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If we are able, in some way, to identify Y (2) as a multiple of y(z), say
Y (2) = Ay(z), then this fact can by expressed by asserting that y(z) is an
eigenfunction of the integral equation

#(z) = A /C K (2, 6)¢(t)w(t)dt (6.2.8)

X being the corresponding eigenvalue. Naturally, the value of A depends
on the particular solution y(z); let us therefore write more specifically

%) = Am fc K (2, ym{tw(t)dt (6.2.9)

Evaluation of the eigenvalue X is important, but seems to have been
attempted only in a few cases. If, for instance, y(z) is a Heun function of
class I or class III, so that y(0) is finite and calculable, then we may set

z=0in (6.2.8) and obtain

)i (0) = fc KO, ym(e)ult)dt (6.2.10)

The search for kernels

We return now to the problem of finding suitable kernels K(z,¢) satis-
fying (6.2.5).

Both Lambe and Ward and Erdélyi transform to new variables 6, ¢ (in
effect, polar coordinates on the unit sphere) given by

cosf = (%E)% (6.2.11a)
siné cos¢ = (%)% (6.2.11b)
sin @sin ¢ = ((z—"ll)(ta—“l))% (6.2.11c)

The partial differential equation to be satisfied by K then becomes, in
the @, ¢ variables,

. K oK
sm29( 502 +[(1—27) tan@ + 2(8 + € — §) cot. 4] 0 f4aﬁK)

82K
+ gt (1~ 26)cotp— (1~ QE)ta,nqb] 53 =0 (6.2.12)

This equation is separable, and solutions may be obtained in the form
K = ©(8)®(¢) where © and ® satisfy equations of the Riemann P form,

6.2. Linear integral equations and relatic 1]

and hence are expressible in terms of hypergeometric functions.. The 6ce
rence of a separation parameter leads to a wide choice of possible: kerne
including those obtainable by summation of different kernels or even:
gration with respect to the separation parameter. The arguments of thi
hypergeometric functions are

(z—a)(t—a)
(1—a)(zt —a) _

Lambe and Ward consider kernels which are hypergeometric functio i
of the argument z¢/a = cos® 0; they are concerned principally with intégra
equations satisfied by Heun polynomials of class I, for which K (z ).
oF1 (o, B57; 2t /a), but also give nuclei for equations satisfied by polynommls. E
of the other classes. 5

Frdélyi obtains a more general class of muclei, in the form of a product" .
of a hypergeometric function of cos®# and another hypergeometric func
tion of cos? ¢. More generally, kernels can be obtained by a sum of ‘such
functions or even an integral over the separation parameter which ariseg
in this representation from the process of separating the equation {6.2. 1'2)
Erdélyi shows that the integral equations so obtained are satisfied not only
by Heun polynomials but by Heun functions also, :

Erdélyi (1944, para. 10) gives an interesting application of this, by ShOW
ing that when an E-type II series for a Heun function is substituted: int
the right hand side of a certain integral equation, the left hand side yxe}d'
an E-type I series for the same function.

Lambe and Ward devote attention also to a number of related equa.tlons
i.e. special and confluent cases of Heun’s equation, namely (i) the Lam
equation, when the kernels become Legendre functions, (ii) the associate
Lamé equation, when they become Giegenbauer functions, (iii) the confluent
Heun equation, when they become confluent hypergeometric functions; 'arid_
finally (iv) a generalized Mathien equation, for which the kernels are Hankel. :
functions.

zt
cos®f = =, cosi =
a

Integral relations

Our discussion above has concentrated on the situation where the Y (2) -
of (6.2.7) is a multiple of y(z), resulting in an integral equation., This
happens, roughly speaking, when K (z,t), regarded as a function of z, hasg
the same kind of behaviour as y{z). It is perfectly possible, however, to
find solutions of (6.2.5) where K (z,t} has different behaviour, so that ¥ (z);
while still a solution of the differential equation, is not the same &as y(z)
Another possibility for obtammg such relations is to alter the contour c
suitably.

An integral relation cannot, of course, be expressed as prec1sely a8 an
integral equation, since it depends on the identification of the partlcular
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solution Y (z) which the integral represents. We can only write the analogue
of (6.2.10) in a rather general form

Yin(2) = fim fc K (2, ym (B ()t (6.2.14)
for some constant ji,,.

Very little appears to have been done on the exploitation of these re-
sults, though many instances are known, in other areas of higher special
functions, where formulae of this kind give valuable integral representa-
tions of solutions in terms of other (generally simpler) solutions, and also
of asymptotic expressions for particular solutions, with respect to either
a large variable or a large parameter. This is one of the areas of Heun’s
equation in which further investigations may be very fruitful.

Formal bilinear development of the kernel

An extremely useful application of integral equations and relationships
of the types described above is to the expansion of a kernel K{z,t) as a
series of products of the form f(2)g{t).

Consider, first, the situation where K (z,t) is a symmetric function of z
and £, and where the relationship is an integral equation of the form (6.2.9).

Suppose also that K(z,t), regarded as a function of z, is such that it
can be expanded as a series

)= cm(t)m(2) (6.2.15)

Then we can apply the result of (5.2.14), use (5.2.12), (6.2.15), and obtain
em(t) = (Gmxm)dym(t)

hence formally

K(z,8) = Y (0mdm) " Ym(2)ym(t) (6.2.16)
The other situation, in which K{z,#) is not symmetric, and the relation-
ship is an integral relation of the form (6.2.14), gives a similar expansion

of K(z,t) in a series of the products Yy, (2)ym(t).

6.3 Non-linear integral equations and relations

The key paper here is that of Sleeman (1969b), which gives the principal
idea but is incorrect in some details.
The basic theorem is the following:

Let
(1) y{2) be a solution of Heun’s equation (1.1.1},

6.3. Non-linear integral equations and r"e]étio

(if) H(z,s,t) be a solution of the partial differential equation .'

(t —2)M(H) 4+ (z — s)M(H) + (s —t)M,(H) =0

where M is the operator defined in (5.2.2),
(iif) €1 and C; be suitable paths in the complex s,t planes such tha,t
both the ‘integrated parts’

[s”’(s —1)(s — a)f (y(s)%_f B Hg%?)] o)

and

L“f(t ~1)°(t—a)° (y(” %f T d?isft)) } G
vanish,

(iv) the weight function W (s,t) be defined as in (5.3.1),
(v) the function Y (z) defined by

Y{(z) :zfc : H(z, s, tyy(s)y(t)W(s,t)dsdt

exist and, if the integral is singular, let it converge uniformly w1th respe
to z when z,8,t lie in appropriate regions. el
Then Y {z) is a solution of Heun's equation.

As for the linear integral equations of section 6.2, there are various
possibilities for ¥ (z). It may be a non-zero multiple of y( ), in which case:
we have a non-linear integral equation for ¢. It may be a different soliition
of Heun’s equation, giving us thereby an integral relationship between' two
solutions. Finally, it may be the trivial zero solution. These possibilitiés._'
. depend largely, though not completely, on the character of H(z,s t) as a
- function of z. o

The search for kernels

©. The problem now is to obtain solutions H(z, s,t) of the partial di'ffe'ri:
. ential equation (6.3.1). This is made easier by a change of variables; we'_
introduce new variables u, v, w given by

wi

(stz)

4 ==

(634:1)

- [(3 —a)(t —a)(z—a)]

i) 6340

(6;3.4:&)__
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In terms of these variables, equation (6.3.1} becomes
H H. H
Hyw + Hyy + Hypy + (27 — 1)% +{26 — 1)-v—“ + (2 — 1)—1}2 =0 (6.3.5)

(Sleeman (1992) corrects his paper at this point: his previous work is valid
only in the case when § = ¢ = v.)

There are two possibilities immediately suggested, each of which can be
made to yield a large number of possible nuclei H.

(i) We may proceed, as Sleeman does, on similar lines to those used by
Lambe and Ward (1934) and Erdélyi (1942b), namely to make the further
transformations

(6.3.6)

and obtain a partial differential equation which may be separated in the
r,0,¢ variables. This leads to possible nuclei involving the product of
a power of r, a hypergeometric function of cos? ¢, and a hypergeometric
function of cos? ¢.

Such nuclei can clearly be constructed on lines indicated by Sleeman’s
work, but do not appear to have been explicitly obtained.

(ii) It is possible to separate the equation (6.3.5) directly in wu,v,w
coordinates, resulting in three equations each of which can be solved in
terms of Bessel functions, This possibility has not yet been explored. .

It should be noted that the treatment here is a further example of the
technique of ‘simultaneocus separability’ explained by Leitner and Meixner
(1960) and more fully by Schmidt and Wolf (1979). In effect, the z,s,t
coordinates are Cartesian, the u, v, w are ellipsoidal, and the r,0, ¢ are
spherical coordinates.

u=7rcosd, v = rsinfsin ¢, w = rsin § cos ¢

Formal expansion of the kernel

'The possibility now exists of obtaining a formal expansion of a kernel
H(z,s,t) as a series of products f (2} f2(s) fa(t), particularly in the case
where H(z,s,t) is symmetric in the two variables s,t. We may regard
H(z,s,t) as a function of the two variables s,t, assume an expansion as a

double sum
H(z,s, t) = Z Z Crn,n (z)ym,n(s}ym,n(t)

and, as in (5.3.6), and then use (5.3.3), (5.3.7), and the integral equation or
relation to obtain the ¢m,n(%) as appropriate solutions of Heun’s equation,

With regret, we have to leave this topic as an interesting and possibly very

valuable area for further investigation.

Feliz M. Arscott
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Appendix

A — A glossary of technical terms

In this appendix, we give a brief explanation of a number of technical "t'er_x_r;g .
from the general theory of linear differential equation which are used in t;ge

body of the text. .
We refer to the second-order linear homogeneous equation

d2y dw
—_ = 0
75 tel) — +a(2w

“where w, z are regarded as complex variables, and p(z},q(z) are mero
“‘phic functions. :
1, Ordinary points and singularities i
A po.int zp of the plane is said to be an ordinary point of the eq_u_fc'ltidn
‘A1) if p(2) and ¢(2) are both regular at z. g
- Any other point is a singularity of the equation.

2. Regular and irregulaer singulorities

Let 2y be a singularity (so that at least one of p(z), ¢(z) has a smgularlt;y

it:z9). Then if, at zp,

p{z) is regular or has a pole of order 1, and . g
_q(z) is regular or has a pole of order not exc-:eec%m_g 2,

we say the singularity at zy is regular. Otherwise it is irregular. T]’l.l,.lS.,::.

& regular singularity,

lis (2~ 20)p(z) = 4, lim (z — 20)%4(2) = B

both exist.

3. Indicial equation af a regqular singularity: exponents
‘The equation

: PH(A-1)p+B=0 (A3
called the indicial equation at the point zy. Its roots g1, p2 are-_ti}:c?.
aracteristic exponents at zg. e




