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Mekh—-mat entrance examinations problems

Ilan Vardi*

The recent article of Anatoly Vershik and Alexander Shen [21] [19] describes discrimination against Jews
in Soviet universities during the 1970’s and 1980’s. The article contains a report by Alexander Shen on the
specific role of examinations in discrimination against Jewish applicants to the Mekh—mat at Moscow State
University during the 1970’s and 1980’s. The article goes on to list “killer problems” that were given to
Jewish candidates. However, solutions to the problems were not given in the article, so in order to judge
their difficulty, one must try the problems for oneself. The aim of this note is to relieve readers of this time
consuming task by providing a full set of solutions to the problems. Hopefully, this will help readers gain
some insight into the ethical questions involved.

Section 2 consists of a personal evaluation of the problems in the style of a referee’s report. It was
written to provide a template for readers to make a similar evaluation of the problems. This evaluation also
reflects the author’s own mathematical strengths and weaknesses as well as his approach to problem solving.
Readers are therefore encouraged to make up their own minds.

The problems are given exactly as in [19] with the names of the examiners and the year (A. Shen has
explained that in his article, the name of the examiners and year is given by a set of problems ending with
the name). Some inaccuracies of [19] both in the statement of the problems and attribution of examiners
have have been corrected, see Section 4. Some of the statements are nevertheless incorrect. These errors are
a reflection of either the examinations themselves, the report given by the students, or the article of [19]. In
any case, this is further evidence for the need of a complete solution set.

These solutions were worked out during a six week period in July and August 1999. In order to retain
some aspect of an examination, no sources were consulted. As a result, the solutions reflect gaps in the
author’s background. However, this might offer some insight into how one can deal with a wide range of
elementary problems without the help of outside references. An effort was therefore made to explain how
the solutions were found. The solutions are the most direct that the author could come up with, so some
unobvious tricks may have been overlooked.

After completing these problems, the author discussed them with other mathematicians who, in some
cases, found much better solutions. These solutions are therefore given along with the author’s solutions in
Section 3. Section 4 provides notes on the problems such as outside references and historical remarks.

The most egregious aspect of these problems is the fact that they are, to the author’s knowledge, the
only example in which mathematics itself has been used a political tool. It is important to note that there is
absolutely no controversy about whether this discrimination actually took place—it appears that antisemitism

at the Mekh—mat was accepted as a fact of life. It is the author’s conviction that the best course of action
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now is to provide as much information as possible about what took place. A more detailed account of the

political practices described by Vershik and Shen should follow.
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Problems

. (Lawrentiew, Gnedenko, O.P. Vinogradov, 1973) (V.F. Maksimov, Falunin, 1974) K is the midpoint of

a chord AB. M N and ST are chords that pass through K. MT intersects AK at a point P and NS
intersects KB at a point (. Show that KP = KQ.

. (Maksimov, Falunin, 1974) A quadrangle in space is tangent to a sphere. Show that the points of tangency

are coplanar.

. (Nesterenko, 1974) The faces of a triangular pyramid have the same area. Show that they are congruent.

. (Nesterenko, 1974) The prime decompositions of different integers m and n involve the same primes. The

integers m + 1 and n + 1 also have this property. Is the number of such pairs (m,n) finite or infinite?

. (Podkolzin, 1978) Draw a straight line that halves the area and perimeter of a triangle.
. (Podkolzin, 1978) Show that (1/sin’z) < (1/2%) +1—4/x% for 0 < z < /2.

. (Podkolzin, 1978) Choose a point on each edge of a tetrahedron. Show that the volume of at least one of

the resulting tetrahedrons is < 1/8 of the volume of the initial tetrahedron.

. (Sokolov, Gashkov, 1978) We are told that a® + 4b*> = 4, cd = 4. Show that (a — d)?> + (b — ¢)? > 1.6.

(Fedorchuk, 1979; Filimonov, Proshkin, 1980) We are given a point K on the side AB of a trapezoid
ABCD. Find a point M on the side CD that maximizes the area of the quadrangle which is the
intersection of the triangles AM B and CDK.

(Pobedrya, Proshkin, 1980) Can one cut a three—faced angle by a plane so that the intersection is an

equilateral triangle?

(Vavilov, Ugol’nikov, 1981) Let Hy, Ho, H3, Hy, be the altitudes of a triangular pyramid. Let O be an
interior point of the pyramid and let hy, ha, h3, hy be the perpendiculars from O to the faces. Show
that Hf +H24 +H34 ‘f-H—;1 Z 1024h1 . hg . h3 . h4.

(Vavilov, Ugol'nikov, 1981) Solve the system of equations y(z + y)? =9, y(z® —y3) = 7.

(Dranishnikov, Savchenko, 1984) Show that if a, b, ¢ are the sides of a triangle and A, B, C are its angles,
then

a+b—2¢c b+c—2a a+c—2b
>0.
sn(C/2) | sm(4/2) " sn(Bjz) =0

(Dranishnikov, Savchenko, 1984) In how many ways can one represent a quadrangle as the union of two

triangles?
(Bogatyi, 1984) Show that the sum of the numbers 1/(n® + 3n® + 2n) for n from 1 to 1000 is < 1/4.
(Evtushik, Lyubishkin, 1984) Solve the equation z* — 14z* + 662% — 1152 + 66.25 = 0.

(Evtushik, Lyubishkin, 1984) Can a cube be inscribed in a cone so that 7 vertices of the cube lie on the

surface of the cone?
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(Evtushik, Lyubishkin, 1986) The angle bisectors of the exterior angles A and C of a triangle ABC
intersect at a point of its circumscribed circle. Given the sides AB and BC, find the radius of the

circle. [From [19]: “The condition is incorrect: this doesn’t happen.”]

(Evtushik, Lyubishkin, 1986) A regular tetrahedron ABCD with edge a is inscribed in a cone with a
vertex angle of 90° in such a way that AB is on a generator of the cone. Find the distance from the

vertex of the cone to the straight line C'D.

(Smurov, Balsanov, 1986) Let log(a,b) denote the logarithm of b to base a. Compare the numbers
log(3,4) -1og(3,6) - ... - log(3,80) and 2 log(3, 3) - 1log(3,5) - ... -log(3,79)

(Smurov, Balsanov, 1986) A circle is inscribed in a face of a cube of side a. Another circle is circumscribed

about a neighboring face of the cube. Find the least distance between points of the circles.

(Andreev, 1987) Given k segments in a plane, show that the number of triangles all of whose sides belong
to the given set of segments is less than C k32, for some positive constant C' which is independent of
k.

(Kiselev, Ocheretyanskii, 1988) Use ruler and compasses to construct, from the parabola y = x2, the

coordinate axes.
(Tatarinov, 1988) Find all a such that for all z < 0 we have the inequality axz® — 2x > 3a — 1.
(Podol’skii, Aliseichik, 1989) Let A, B, C be the angles and a, b, ¢ the sides of a triangle. Show that

60° < aA+ 0B +cC <

90° .
- a+b+c



2 Evaluation of the Problems

I have classified the problems according to difficulty, inherent interest, and correctness. The first two criteria
are subjective, however, the fact that the problems listed in VIIT and IX have incorrect statements is proved
in Section 3. This evaluation reflects the solutions presented in Section 3.

Since these problems appear to be at a level similar to Olympiad problems [19], it seems that Olympiad
problems are an appropriate standard for comparison, see [7] [8] [13] [15] [16] [17].

However, it must be stressed that these problems were given in oral examinations. This makes the
comparison to Olympiad problems valid only in the sense that given similar conditions, the problems have the
same level of difficulty. Note that the International Mathematical Olympiad consists of a written examination
given over two days, with a total of hours to solve 6 problems.

It should be noted that these problems also differ from Olympiad problems by being, in many cases,
either false or poorly stated. Such defects have the side effect of making the problems more interesting in
some cases, as they are less artificial than Olympiad problems in which a certain type of solution is often

expected.
I. Easy. 15, 24.

By this, I mean problems which, once one has understood the statement, offer no conceptual or technical
difficulty—there are is no idea or difficult computation to challenge the solver. I also include problems
which require ideas which are completely standard and should be known to students wishing to pursue

a college mathematics education.

II. Tricky. 4,7, 8,13, 14, 18, 23.

By this, I mean problems which can be quite challenging until one has found a simple but not well
motivated idea after which the result is immediate. This applies to the proof that the statement of
problem 18 is false. Note that problem 7 is much more difficult than the others, see Remark 7.2.
Problem 14 has a “trap” which caught some students [20], but the examiners themselves overlooked a

trap, see Remark 14.1.

IT1. Challenging and interesting. 3, 9, 11, 20, 22, 25.

These are problems whose solutions require interesting ideas and whose statements are also of interest.

In other words, these would make good Olympiad problems.

IV. Straightforward and difficult. 1, 2, 5, 6, 17, 21.

These are problems which can be solved by a direct computation which does not require any clever
idea, though the computation may be quite involved. The problems have alternate solutions with
interesting conceptual content and thus put them in category III (this applies to problems 1, 2, and
21).

V. Difficult and uninteresting. 10, 12, 16, 19.

These are problems with an uninteresting statement and whose solution is a long and unmotivated

computation.



VI1. Inaccurate statement. 5, 7, 9, 14, 19, 22.

These problems have statements with alternative interpretations most likely not intended by the au-
thors.

VII. Completely wrong. 18, 19. (So A. Shen’s comment [19] about 18 is correct.)

This problem asks for conclusions about situations which cannot occur.



3 Solutions

Problem 1. K is the midpoint of a chord AB. M N and ST are chords that pass through K. MT intersects
AK at a point P and NS intersects KB at a point ). Show that KP = K(Q.

Solution S: The following solution is due to Pavol Severa.

The claim can be made obvious using Lobacevskij geometry. In the Klein disk, i.e., projective, model,
the Lobacevskij plane is a disk and straight lines are chords. Let the notation be as in the statement of the
problem. If K is an arbitrary point on the Lobac¢evskij line AB then QK and PK are congruent, since a
180° rotation about K preserves the picture, except that it exchanges P and Q. It follows that P and @) are
equidistant to K in the Lobacevskij metric. Now let C'D be the diameter of the circle passing through K,
then the previous remark shows that the Lobadevskij reflection about C'D takes P to ). But since we chose
K to be the Euclidean centre of AB, CD is perpendicular to AB, so that the Lobac¢evskij reflection about
CD equals the Euclidean reflection about C'D. It follows that |QK| = |[PK]| in Euclidean sense as well.

Solution R: The following solution is due to David Ruelle. The idea is to use the cross ratio of four points
A, B,C, D which can be defined by

1) (4,B,0,D] = A" 1BD)]

" |AD|-|BC|’

One simply notes that A,Q, K, B are the stereographic projections of A,S, M, B with pole N and that
A, K, P, B are the stereographic projections of A, S, M, B with pole T. Since stereographic projection pre-
serves cross ratios, it follows that [A, Q, K, B] = [A, K, P, B]. The result follows from a simple computation

using the above algebraic definition of cross ratio.




It should be noted that the above stereographic projection is not the standard one but still preserves
cross ratios. To see this, let L be a line perpendicular to a diameter through N and let A', @', K', B’ be the
projections of A,Q, K, B onto L. This projection preserves the cross ratio. The stereographic projection of
A,S,N,B onto A',Q',K', B' is now the standard one, i.e., is an inversion, and thus preserves cross ratios
[10, Theorem 5.42].

Algebraic solution: The following argument uses an algebraic approach which seems to be the most direct,
i.e., requires the least amount of ingenuity or knowledge.

Let the circle be {(z,9) : 2® +¢*> = 1} and let K = (0,0), so that A = (—/1—$2,3) and B =
(m ,3). One first excludes the trivial case M = S and N =T when P = Q = K and the result holds.
Otherwise, one considers two lines Ly and Lo passing through K which determine the chords. Assuming
for the time being that neither L; nor L, is parallel to the y—axis, the lines L;, Ly can be defined by the
equations y = myiz + 3, and y = max + B, respectively.

Without loss of generality, one can assume that m; > 0. First, one considers the case when my < 0. Let
L, intersect the circle at M = (z1,y;) and N = (z3,y3), where x; > x3, and y; > y3, and Ly intersect the
circle at T' = (22,y2) and S = (x4,v4), where x2 > 24, y2 < ys.

One now computes P, i.e., one finds the z—coordinate of the point on the line segment MT which has
y—coordinate equal to 8. The line segment is represented by AM 4+ (1—A\)T,0 < A < 1,80 My1 +(1—=N)y2 = 3,
and one gets A = (8 — y2)/(y1 — y2). Letting P = («, 3), one has
B (21 — x2) + Y122 — Y221

Y1 — Y2

(2) o=
One observes that

Y1T2 — Y221 = 122 (y—l - y—2) =212 <m1 + ﬁ — M2 — &> = $1$2(m1 - mz) +,8.’L'2 - 5.731 .
1 2 x1 T2

Substituting this into (2) gives

mi; — Mo
3) Y=y ma
T2 T

Since M and T lie on the unit circle, one has 2 + (m123 + 3)2 = 1 and #3 + (m223 + 3)? = 1, so with the
above assumptions,
—mif++/1+mi - 52 _—m2ﬁ+v1—|—m2 ﬂz

ry = To =
! 1+ m? ? 1+m3

This implies that

my %_ml(l—%mz (=m2f —/14+m3—p%) ma(1+m?)(—m1f — /1+m? — 32)

Ta T m36% — (14+m3 — 3?) m232 — (1+m? — 3?)
_—may/1+m3 — 524+ may/1+mi —ﬂ2
= P
and gives

(my —ma)(1 = 5?)
miy/1+m3 — B2 —ma/1+m? — 52

One now observes that the value of « is invariant under 8 — —3. This in fact proves the result in this

o=

case. To see this, note that 8 — —f corresponds to a 180° rotation which interchanges M and N and



interchanges S and T', and therefore interchanges P and (). Moreover, this preserves the slopes of L; and
Ly since /BKM = /AKN and /BKT = /AKS. Since the value of a does not change, this shows that
KP| = |KQl.

Next, one considers the case in which my > 0. Without loss of generality, assume that my > m;. One
then lets M = (x1,y;) be the intersection of L; with the circle and T = (x2,y2) be the intersection of the
circle with Ly, where z1,y; > 0 and x2,y> < 0. Arguing exactly as above one lets P = («, 8) and once again

(3) holds. Solving for T', M on the unit circle one now obtains

_omp TP —mp— JTE P

TrT1 = =
! 1+m? 2 1+m2

Substituting this into (3) yields

(my —my)(1 = 57)

a1+ mE =B +ma/T+mE— 32

Once again, « is invariant under 8 — —f and the result for this case follows as above.

a

Finally, there remain the cases when Ly or Lo are parallel to the z—axis or y—axis. Since |PK| and |QK]|

are obviously continuous functions of M and S, the result follows by continuity from the previous cases.

Elementary geometry solution: After much effort the following elementary “geometric” argument was
found. However, this proof seems more difficult, as some of the intermediate results appear to be at least
as deep as the main result. On the other hand, this argument does not require knowledge of hyperbolic

geometry.

A trivial case occurs if one of the chords equals AB, so it will be assumed that this is not the case. The
first observation is that the result follows from

area KMT area KSN

(4) area KMBT _ area KSAN

To see why this is the case, define h; to be the distance between M and K B, i.e., the altitude of KM B, and
similarly let hs the distance between T' and K B, hs the distance between S and AK, and hy4 the distance
between N and AK. Tt follows that

area KMT = |KP|(h1 + h2), areaKMBT = |KB|(h1 + ha),
(5)
area KSN = |KQ| (hs + hy), areaKSAN =|KA|(hs + ha).
Since | K A| = |K B|, equation (4) implies that |K Q| = |K P|, which is the statement of the result.

The proof of (4) begins by recalling that if two chords XY and ZW of a circle intersect at T, then
|XT|-|TY|=|ZT|-|TW]|. Since the proof of this result is much easier than what is to follow, it is left as a
preparatory exercise for the reader.

The intersection of chords implies that triangles K MT and K SN are similar and it will be convenient to
let p = |KM|/|K S| be the common ratio between the corresponding sides. Since /TKM = /NK S, the area
of triangle K M T equals p? area N K S (this follows from the same argument as Lemma 7.1 below). Equation
(4) is therefore equivalent to area K M BT = p? area KSAN, and (5) shows that this is in turn equivalent to

(6) hi + hy = p2 (hs + ha) .



The proof of this follows from
1

Lemma 1.1. Let the notation be as above, then (a) hihs = p*hshy, (b) e +—=—+—.
1

Assuming this for the moment, one has

h3+h4_ 1 1 1 1_h1+h2_h1+h2

hshy _h_3+h_4_h_1+g_ hihs _p2h3h4’

which implies (6) and the main result.

Proof of Lemma 1.1: In order to prove part (a) one uses the above result about chords which shows that
triangle K M B is similar to triangle K AN and triangle KT B is similar to triangle K AS. As before, one has

KM|\? |KB|\”
= KAN KTB= KAS.
area K M B ( K] ) area , area ( K9] area S
Since |KB| = |K A] it follows that
(7) (area K M B) (area KT B) = p* (area K AN) (area K AS) .

But one also has
areaKMB = hi |KB|, areaKTB =hy|KB|, areaKAN = hy|AK|, areaKAS = hs|AK|,

which, upon using |AK| = |KB|, gives part (a) of the lemma. Part (b) is a consequence of the following

surprising result:

Lemma 1.2. Given a chord AB of a circle, let M N be any other chord bisecting AB, x the distance from
N to the line AB and y the distance from M to the line AB. Then 1/x — 1/y is independent of M N except
for its sign which only depends on the side of AB that M lies on.

Assuming this, one notes that M and N lie on different sides of AB, so applying Lemma 1.2 gives
1 1 1 1

T ha ha  hg

which is equivalent to part (b) of Lemma 1.1.

Proof of Lemma 1.2: Let O be the center of the circle and assume that N and O lie on the same side of
AB. Draw a perpendicular from O to KN meeting KN at I Since N and M lie on a circle with center O,
one has |OM| = |ON| and so the triangle OIM is congruent to the triangle OIN. It follows that I bisects

10



NM. Now let J lie on the ray IN be such that |JI| = |IK|. By the previous argument |IK| < [IM| so J
lies strictly between N and I. Since I also bisects JK, it follows that |NJ| = |K M| and thus

(8) |KN|=2|KI|+|KM]|.

Now drop a perpendicular from N to AK meeting the line AK at H, so that the signed length of NH is
n. Since /KHN = /HK0 = 90° and /HKN + /IKO = 90°, it follows that triangle K HN is similar to

triangle OI K. From similar triangles, one gets

|KI|  |OK|
z  |KN|’
Substituting this into (8) gives
|KN| 2z |OK]| 2z |OK
=1+ =1+ >
|KM]| INK|- [KM]| R2 — [OK]?

where R is the radius of the circle. The last equality follows from the fact that NK intersects the diameter

DE containing K so by intersection of chords [NK|-|KM| = |DK|-|KE| = (R+ |OK|)(R — |OK]). One

therefore gets
©) 1 |KN| _ —2|0K]| .

x z|KM| R?-|OK|?
One now drops a perpendicular from M to KB meeting KB at G, so that the length of MG is y, since
G and O lie on opposite sides of AB. The triangle KGM is similar to KHN so that y = 2|KM|/|KN]|.
Plugging this into (9) shows that 1/z — 1/y has the constant value —2 |OK|/(R? — |OK|?), which proves the

result in this case.

Similarly, if it is M and O which lie on the same side of AB, then one replaces N with M in the above
argument, i.e., one lets I lie on K M, etc., and the result carries through in the same way and one arrives at
(9) with z and y interchanged, which proves that value of 1/x — 1/y changes sign if N lies on the opposite
side of AB. O

Problem 2. A quadrangle in space is tangent to a sphere. Show that the points of tangency are coplanar.

Solution: This solution was independently found by Pavol Severa and Igor Rivin.
Let Aj,..., A4 be the vertices of the quadrangle given in cyclic order. For each point A; let k; be the
circle on the sphere where the tangents passing through A; touch the sphere. Notice that the cyclic order of

the vertices induces a cyclic order on the k;’s, in particular, these can be oriented so that their orientations

11



at the four points of tangency agree. Now we make a stereographic projection from one of these points of

tangency so the picture looks like
X k,

> : >

k2

ky

> - >

We have to prove that X, Y and Z lie on a line. This is visually obvious, but just to help: the homothety with

centre at Y that maps ks to k4, maps k; to a tangent of ks parallel to k4. Actually, since the orientations

agree, it has to map k; to k4 and therefore X to Z.

Alternate solution: The following solution was found by Georg Illies.

Excluding trivial special cases we assume that the points T7,73,74 and T3 in which the sides of the
quadrangle ABCD touch the sphere (with center M) lie in the interior of the sides, i.e. Ty € AB, T} # A, B
and so on. We also assume that A, B,C, D are not coplanar.

Consider the plane £ determined by 77,73 and Ty. If one edge of ABCD were in £ the others would
also, by our assumptions. So by the above, A and C lie on different sides of £ as do C' and B as well as B
and D. Thus also A and D lie on different sides of £.

Let the points A’, B',C', D' in £ be such that AA' 1L, BB' 1€ etc. Let @ be the intersection point of £
and AD, it is thus the point in which AD and A’'D’ intersect. (Observe that AA'||DD’' so A, A', D, D" are
coplanar; the same argument shows that 7 is the point in which AC and A'C" intersect and so on.) We
have to show Tb = Q.

Now we have |ATy| = |ATh|, |CTi| = |CTs| and so on (as the right triangles AMT> and AMT; are

congruent etc.). Thus

ATy _ |ATY| |CTs| |BTi| _ |A4| |OC| |BB'| _ |AA]| _ |AQ)
DT,| ~ |CT| BTy DT T [C'| 1BB| 1DD| T DD T |DQ)’

where the second and fourth equality follows by considering the similar right triangles AA'T; and CC'T}.

One therefore gets To = @, as claimed.

Algebraic solution: The following approach puts the problem into purely algebraic form and minimizes
geometric intuition.

Let the quadrangle be ABCD and the sphere S. Assume, without loss of generality, that the points of
tangency lie on AC, AD, BC, BD. If the quadrangle lies in the plane, then the result is trivial, so it will
be assumed that this is not the case.

Let K be the center of S, then A, B, and K lie on a plane. Without loss of generality, one can assume
to be the z—y plane, that A and B lie on the z—axis and that K lies on the y—axis, so that A = (a,0,0),
B = (b,0,0), and K = (0,%,0). One can also assume that b > a, £k > 0, and that the sphere has radius 1.
Let the points of tangency be at T; = (z;,v:,2:), ¢ = 1,...,4, where Ty lies on AC, T> on AD, T3 on BC,
and Ty on BD.

12



The approach begins by noticing that A, B, C, Ty, T3 lie in a plane and the same holds for A, B, D, T3,
Ty. In fact, choose a plane P containing the x—axis and of slope m with respect to the z—y plane, and two
points T, 7" € SN P so that AT and BT' are tangent to the sphere. Then, generically, there is an interval
of slopes m such that AT and BT’ meet at a point. One concludes that characterizing T and T" in terms of
m will lead to all possible quadrangles with 4 points of tangency on S.

Thus, consider the plane P of slope m with respect to the x axis, so that (z,y, z) lies on P if and only if
z=my. Now let T = (z,y, z) be a point on S such that T'A is tangent to S. Thus (T'— K) - (T — A) =0,
so that

z(x—a)+yly—k)+22=0.

Moreover, since S has radius 1 and center K, one gets

(10) 22+ (y—k)?+22=1.
Subtracting these equations yields
ky +1—k?
(11) p=yti=m
a
where one assumes for the time being that a # 0. It follows that
ky+1—k?
(]‘2) T= (%73}7"7/?/) )

for some y. One can now use (10) to solve for y and this leads to
24 2202 | 2

(13) V2 <k];i+f1“)—2ky+k2—1:o.

Note that this equation is well defined since the conditions of the problem imply that the distance from A

to the center of the circle K is greater than the radius of the circle, i.e., a2 + k2 > 1.

Instead of solving directly for the y;’s, it seems more efficient continue by using (12) to gain information
about T1,...,Ty. Thus, assume that A, B,C lie on a plane of slope m with respect to the x—y plane, and
that A, B, D lie on a plane of slope n with respect to the z—y plane. Applying (12) yields

T1:<ky1+1—k2 (ky2+1—k2
a a

kys +1 — k? kys +1 — k?
T3 = (ysiay37my3) ) T4 = (miay47ny4> .

7y17my1> ) T2 = 7?/27”3/2) )

b b

In order to tell whether T7,...,T4 lie in a plane one checks to see if T, — Ty, T3 — Ty, and Ty — T form a
linearly independent set. Since Ty — Ty = (Ty — T1) — (T3 — 1), this is equivalent to verifying whether the

following determinant vanishes

% (Y2 — 1) Y2 — Y1 NY2 —my1
D=| k(B-%2)+Q1-F)(5-2) yva—un mlys—y)
% (Y4 — y3) Y4 — Y3 NYs —My3
Assuming for the moment that y; # y2,ys and y4 # y3, one gets
k 1 ny2—mys
a Yy2—yY1
2
D=(y2—yl)(y3—y1)(y4—y3) yiyl (%—%)-Fﬁ (%—%) 1 m
k 1 N¥a—mys
b Ya—y3
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Subtracting the first row from the other two rows yields

k 1 nys—myi
a Y2—Y1
— (170 — _ _ (l—%)(ky;;-i-l—kz) (m—n)y.
D (yZ yl)(y3 yl)(y4 y3) bT 0 rmz
1 1 _
BGE-a) 0 (men) Gty

Expanding from the top row and factoring out common terms in rows and columns yields

kys+1—k>
1 1 v Y2
D = —(y3 - yl)(y4 - y3)(m - ’I’L) (g - E) ‘ y3ky1 Y1Y4—Y2Ys
Y4—Y3

This last determinant equals

(kys +1— k) (y1ya — yoy3) o = k(—y2y3ya + y1y3ya + y1929a — y1y2y3) + (1 — k) (y194 — yoy3)
(ys —y1)(ya — ys) (Y3 = y1)(ya — y3)

It follows that

1 1
1) D= (5 ) mmn s o+ i) + (6 = Do = o).

It is easily seen that this formula holds also if any of y1 = y2, y1 = y3, or y3 = y4 holds, since both sides of
(14) are analytic in y1,...,ys.

Now let w; = 1/y;, i = 1,...,4. Since A and B both lie on the z—axis, it is clear that to lie on a
quadrangle, none of the points of tangency can satisfy y; = 0, so the w;’s are well defined. Substituting this
in (14) results in

m-—n 1 1
1 p=_""" (Z_Z —wg — 2_1 - :
(15) TR <a b) [k(w1 —ws — w3 +wq) + (k ) (waws — wiwy)]

One now solves for the w;’s by applying (13) which gives

2 2,2 2
(k2 — 1)w? — 2kw + <k+a—m+a) =0,

k2 4+a? -1

so that, assuming that k # 1,

o kEVE R D+ @m? 1 @)/ +a? 1)

k2 —1 ’
(16) k(M2 —R2m? + 1) a2 /(B2 + a® — 1)
o k2 -1 ’

_ kx f(m)g(a)
k2—-1 ’

where

fm)=vm?2—-k2m2+1, g(a)=+/a?/(k2+a®-1).

One thus gets

v, = FES(m)g(a) _kxigl@)  _kEfm)gd) Kk Ef()g(b)
S R T Y I T e I
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Once again, one can make a further simplification before using this formula. By writing w; = (k+s;)/(k*-1),

one gets
k(w; —wy — w3 + wq) + (B — 1) (wows — wiwy)

k 1
= k2_1(81—52—83+84)+—k2_1[(k+82)(k+33)—(k+31)(k+54)]
_#a8s =18

k2—-1 7

In other words,

D =

m—mn  S283 — S154 (1 1)

wiwawswy k2 —1 a b

One now observes that
s2s3| = f(n)g(a) f(m)g(b) = [s1s4].

It follows that D = 0 depends only on the signs of s;, ¢ = 1,...,4. In other words, if o; is the sign of s;,
then T1,...,Ty are coplanar if and only if 0104 = 0203, that is s1, 84 and ss, s3 either both have the same
signs or both have unequal signs.

In order to characterize this last condition, one examines the geometrical significance of the sign of o;.
Note first that one has the explicit computation
kA 1-k kjw+1-k*  —(k*—1)s

a a a(k + s1)

Z1

Assuming for the time being that k£ > 1, one has
51 = @
T a2+ k-1

so that k + s; > 0. It follows that oy equals the sign of x; if a > 0, and is minus the sign of z; is a < 0. In

1-m?(k*-1) <1

other words, if the sphere S is divided into two sides Sy and S_; according to whether sign (a) > 0 or < 0,
then o) determines the side of the sphere that T lies in the following way: T lies in S, gign(a)- The same

holds true for T5,...,Ty and one gets
(17) UANS 501 sign(a)» I e Saz sign(a)» UENS SO'3 sign(b)» Ty € 504 sign(b) -

Now consider the two points of tangency 73,73 lying in the plane of A, B. One will say that these are of
Type I with respect to A, B if T} and T3 lie on different sides of the sphere, as defined above, and of Type IT
with respect to A, B if they lie on the same side of the sphere. Thus, in the diagram, the two figures on the
left represent Type I and the figure on the right Type II.
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One now translates the condition that o104 = 0903 into this notation.

(i) If o1 = 04 and 02 = 03, and sign (a) = sign (b), then T4, ..., Ty all lie on Sy so T1, Ty and T», T3 are both
of Type II with respect to A, B.

(ii) If o1 = 04 and o9 = o3, and sign (a) = —sign (b), then T1,T4 and T», T3 are both of Type I with respect
to A, B.

(iii) If oy = —o4 and oy = —o3, and sign (a) = sign (b), then T1,Ty and T»,T3 are both of Type I with
respect to A, B.

(iv) If 01 = —o4 and o9 = —o3, and sign (a) = —sign (b), then T1,Ty and T»,T5 are both of Type II with
respect to A, B.

One concludes that o104 = 0903 implies that 77,7, and Ts, T3 are of the same type with respect to A, B.
If 0104 = —o0903, then the exact same argument shows that 77,7y and 7,73 cannot be of the same type
with respect to A, B. It follows that the condition o104 = 0903 is equivalent to 77,7y and T»,7T3 being of
the same type with respect to A, B. In other words, the points of tangency are coplanar if and only if Ty, Ty
and T, T3 are of the same type with respect to A, B.

This will be shown in the case at hand. In fact, if the points of tangency lie on the edges of a quadrangle,
then they must all be of Type I. In fact, it is easily seen that AT} and BT3 cannot lie on the same side of
the sphere when T} and T3 lie on line segments AC' and BC'. This is obvious from the above diagram and a
rigorous proof is left as an exercise.

Finally, as can be easily checked, the case a = 0 can be proved by continuity from the above argument.

Remark 2.1. The above argument proves the slightly more general result: Given a quadrangle and a
sphere such that the lines extending the edges of the quadrangle are tangent to the sphere, then the points
of tangency are coplanar if and only if there are two vertices such that the pairs of points of tangency are of

the same type with respect to these vertices.

Problem 3. The faces of a triangular pyramid have the same area. Show that they are congruent.

Solution: A good way to approach this problem is to first characterize the consequence of the statement:
There exists a tetrahedron all of whose sides are congruent to a given triangle if and only if all the angles of

the triangle are acute.
c D c
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Proof: Let the triangle be ABC, and assume, without loss of generality, that /ZBAC is greater or equal
the other angles of the triangle. One place a triangle ABD on the line AB such that C' and D lie on the
same side of AB and such that ABC is congruent to BAD, in other words, ABD is a mirror image of ABC.
As in the above, one rotates ABD about AB to form a triangle ABD'. Clearly, any tetrahedron with all
sides congruent to ABC' will be formed in this way, so if a solution exists, then it is unique up to rotational
Symmetry.

(a) Assume that all angles of ABC are acute. It follows that |[CD| < |AB|. Now let ABE be the
triangle ABD rotated 180° about AB, and let F' be the intersection of AB and CE. By construction, it
follows that triangles ACF and BEF are congruent, so C'E bisects AB. By assumption, /BAC > /ACB
so /FAC > /ACF. But in the triangle FAC one has, by the law of sines, that |CF|/sin /FAC is equal to
|AF|/sin LACF, and one concludes that |CF| > |AF|, since sin z is increasing for 0 < z < 90° (recall that
/FAC < 90°).

It follows that |CE| > |AB|. This implies that there must be a rotation with angle strictly between zero
and 180° such that |CD’'| = |AB|. This value of D' then gives the required tetrahedron.

(b) Assume that at least one angle of ABC is not acute, i.e., /ZBAC > 90°. Then |CD| > |AB|, and
rotating ABD about AB will only increase the value of |CD'| so that it is strictly greater than |AB|. It

follows that there can be no solution in this case. O

The original problem uses similar ideas but will require the following technical point:

Lemma 3.1. Let a,b,c,d be positive real numbers such that a,b are not equal to c¢,d in some order. Then
there is at most one value of x such that there are two triangles with side lengths a, b, x and ¢, d, x, and with

equal areas.

Assuming this holds, one proves the result by contradiction. One begins as above by trying to construct
a tetrahedron all of whose sides have equal areas. Thus, let ABC and ABD be noncongruent triangles with

equal areas.

C D

A B

One now forms a tetrahedron by placing ABC and ABD in the same plane with C' and D on the same
side of AB and then rotating ABD about AB to obtain a new triangle ABD'. Clearly, any tetrahedron
with adjacent sides congruent to ABC and ABD will be generated this way.

Let a = |AC|, b = |AD|, ¢ = |BC|, d = |BD|. It follows that the other two faces of the tetrahedron
are ACD' and BCD' with sides a, b,z and ¢,d, z, respectively, where x = |C'D'|. A solution to the problem
requires ACD' and BCD' to have equal areas. Since the assumption that ABC is not congruent to ABD
implies that a,b are not equal to (¢, d) in some order, Lemma 3.1 applies, and there is a unique D' with the

required property.
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Since triangles ABC and ABD have equal areas, ABC and ABD have equal altitudes with respect to
AB, and thus that ACD and BCD must have equal areas as well. This implies that the initial position
D' = D gives the only possible solution to ACD" and ABD' having equal areas. Since these lie in the same
plane, there is no 3—dimensional solution.

Proof of Lemma 3.1: Let the two triangles be ACD and BCD with notation as above, i.e., a = |AC|,
b= AD, ¢ = |BC|,d = |BD|, CD = z. Let o« = LCAD and § = LCBD. Then from elementary

trigonometry (law of cosines) one has

(18) a® +b* —2abcosa = c® +d> — 2cdcos 3 = 27,
while equating areas gives

(19) absina = c¢dsin 3.

Using sin® z = 1 — cos® z, one transforms (19) to
(20) a®b? — Ad® — a*b* cos® a + c*d* cos? B = 0.
Equation (18) implies that

2 _ g2 _p2 2 ) 2 2 2
a2b2cos2a=<%) ; c2d2coszﬂ=(%) )

Plugging this into (20) gives

2 2
a2b2_<7x2—a2—b2) —c2d2+(7x2_02_d2> =0,
2 2
which leads to

(21) x2(a2 TR d2) _ (a2 _ b2)2 _ (02 _ d2)2 .

2
Now if a® + b? # ¢ + d?, then there is at most one positive value of  satisfying (21), and the statement
g

of the Lemma follows. On the other hand, if a® + b = ¢® + d?, then (18) implies that abcosa = cdcos 3.

Combining this with (19), e.g., by using sin® z + cos? = 1, one obtains ab = c¢d. One therefore gets
a’+2ab+ b = +2cd+d?, a® —2ab+ b = c* — 2cd + d°.

This implies that a + b = c+ d and a — b = £(c — d), and one concludes that a,b are equal to ¢,d in some

order, contradicting the hypothesis. O

Problem 4. The prime decompositions of different integers m and n involve the same primes. The integers
m + 1 and n + 1 also have this property. Is the number of such pairs (m,n) finite or infinite?

Solution: The number of such pairs is infinite.

Proof: Let m =2F -2, n=(m+1)2—-1,for k=2,3,4,.... Thenn+1=(m+1)%2, son+1and m+1
have the same prime factors. Moreover, n = (m + 1)?2 — 1 = m (m + 2). Since m + 2 is a power of 2 and m

is already even, it follows that m and n also have the same prime factors.

Remark 4.1. One can ask whether there are infinitely many pairs not of this form. This does not appear
to be an easy question and even finding one other pair is non trivial. A computer search revealed that
m="T5=3-52,n=1215 = 35 - 5 also satisfy this condition since m +1 =2%-19 and n + 1 = 26 - 19.
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In fact, this is a special case of a well known problem of Erdés and Woods in number theory and logic,

see the Notes.

Problem 5. Draw a straight line that halves the area and perimeter of a triangle.

Solution: Let the triangle be ABC, let p = a + b + ¢ be the perimeter, and, without loss of generality,
assume that b > a > ¢. On AB, let D be such that the length of AD is tg = (p — y/p? — 8bc)/4, and on AC
let E be such that the length of AE is be/(2tg). Then the line DE splits the area and perimeter of ABC

into two.

C = (u v)

A D B

Proof: One can think of the triangle ABC as being in the z,y plane with the origin at A, B = (¢,0) and
C = (u,v), where u,v > 0. Under these assumptions, let D lie on AB such that the length of AD is ¢ and
¢/2 <t < c. One will construct E on AC such that DE divides the triangle into two equal areas. In fact,
let E be such that the length of AF is bc/(2t). Then the area of the triangle ADE is

cvt_lcv

202 227
so E satisfies this property. Note that for ¢t = ¢, one gets E = C/2, and for t = ¢/2 one gets E = C.

Now the perimeter contribution of AD and AE is t + be/(2t), so one needs to solve the equation

bc a+b+c

4 — =" -
+2t 2 ’

which has solutions ¢ = (p £ 1/p? — 8bc)/2. I will show that

p—+/p% — 8bc

to = i

satisfies all necessary conditions to give an actual solution, i.e.,

(22) p>>8bc, to<ec, t2>

N O

To prove the first inequality, note that it follows from
(—a+b—c)? =a®>+b*+c® — 2ab— 2bc + 2ac > 0,

which implies
p? = a® + b + ¢ 4 2ab + 2bc + 2ac > 8be.
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The second inequality in (22) is equivalent to
(a+b—3c)> < (a+b+c)? - 8be,

which reduces to 8ac > 0. Finally, the third inequality in (22) is equivalent to
(a+b—c)? > (a+b+c)? —8bc,

which reduces to b > a, which is true by assumption.

Remark 5.1. Since tg is a composition of additions, subtractions, divisions, and square roots of the sides

of ABC, it follows that DE can be “drawn” with ruler and compass.

Problem 6. Show that (1/sin*z) < (1/22)+1—4/7%, 0< 2 < /2.
Solution: The question can be rewritten as

1 1 4
(23) S - +1-=

>0, O0<z<m/2.
2 sin? w2 =7 /

In order to prove this, one begins by showing that

I 1 1 1
im - ===
e—0 \sin2z 22 3

This can be done either by expanding into a power series about z = 0, or by L’H6pital’s rule, as follows:

1 1 2?2-sin®z 0 =0
— = P2 g
sin®z 22 22 sin® 0 ’
so the limit equals the limit of the derivative of the numerator divided by the derivative of the denominator.

Iterating this process yields,

2x — sin 2z 0 1 — cos2x 0
. 92 . - =, ) . - =,
2z sin” ¢ + 22 sin 22 0 sin” z + 2z sin 2z + z2 cos 2z 0
2sin2x 0 2co82x

1
- = - =
3sin2x + 6x cos2z — 2x2sin2x 0’ 6cos2x — 8xsin2x — x2cos2x 3
Since 1—4/m% > 1/3, it follows that there is a § > 0 for which strict inequality holds in (23) for all 0 < z < 4.
Next, one rewrites (23) as

(24) sinz >z,

V1—asin®z
where a = 1 — 4/7%. Clearly, this is an equality for # = 0, and a computation shows that it also holds for

x = m/2. To show that the inequality is strict for 0 < z < m/2, one takes the second derivative of

sinx

fle) = V1-—asin’z ’

which is easily found:

(a—1+2acos®x) sinz
(1 — asin® £)5/2

cos T
(1 —asin®z)3/2"’

fl(=) = f'(x) =

Since a > 1/3, it follows that f’(x) > 0 for 0 < & < x, where x¢ is the unique solution of f"(z¢) = 0 in

(0,7/2) (that x¢ exists and is unique is immediate from the form of f(z)). In other words, f(z) is concave
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in (0,20). Now f(0) = 0, and by the first part, it is true that (24) holds for 0 < z < 4, so the strict concavity
of f(x) implies that f(z) > « for 0 < z < xo.

Since f"(x) only has one zero in 0 < z < n/2 and f"(7/2) = —(7/2)® <0, it follows that f(z) is convex
in (zo,m/2). Since f(xg) > zo and f(7/2) = w/2, convexity implies that f(z) >  for zg < z < /2.

Problem 7. Choose a point on each edge of a tetrahedron. Show that the volume of at least one of the

resulting tetrahedrons is < 1/8 of the volume of the initial tetrahedron.

Solution: The most natural interpretation of “resulting tetrahedrons” is the tetrahedra formed by each

original corner and the points on edges that are adjacent to the corner, see Remark 7.3.

Lemma 7.1. If the angles of a vertex of a tetrahedron are fixed, then the volume of the tetrahedron is

proportional to the length of the sides adjacent to this vertex.

Proof: One assumes the well known facts that the area of a triangle is proportional to the base times height,
and that the volume of a tetrahedron is proportional to base times height. Let A be the vertex with fixed
angles, and B, C, D the other vertices. Let C' and D be fixed and let B vary. If one considers ABC to be the
base of the tetrahedron, then the height remains fixed as B varies. Similarly, if one considers AB to be the
base of ABC, then its height remains fixed. It follows that the volume of the tetrahedron is proportional to
AB. By symmetry, this holds for B and C, proving the result.

Alternatively, if one lets a be the angle CBA and 3 the angle that AD makes with ABC, then the
volume of the tetrahedron is simply & |[AB| - |AC| - |AD|sinasin . O

Now let the tetrahedron be T' with vertices Ai,...,As. One then picks a point on each edge so that
P;; lies on A;;, 1 < 4,j < 4, with the convention that P;; = Pj;. The resulting tetrahedra are then Tj,
i =1,...,4, where T; has vertices A; and P;;, j # i. Let v(R) the volume of a three dimensional region R,
then the problem is to show that one of v(T3)/v(T) < 1/8.

In order to do this, let r;; = |A;P;;|/|AiA;| be the ratio of the distance of Pj; to the corner A;; with

respect to the edge A;A;. Since the angles at the corner A; of T; remain fixed as the P;;’s vary, one can

’U(Tz) _
o(T) Hrij'

J#i

apply Lemma 7.1 to get

Multiplying all these quantities together gives

Since 7;; = 1 —rj;, it follows that

uT) _ II rs-ri).

1 (T) 1<i<j<4

4

k2

4
T; 1

(25) H v(T;) <.

This implies that not all of the factors on the left of (25) can be > (1/4%)'/4 = 1/8. The result follows.
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Remark 7.1. This argument generalizes verbatim to n—dimensions. Thus, let S be an n-dimensional

simplex, i.e., the set
S={MA1+ -+ g1dnt1: My A1 20, A4+ A =1,

where the vertices Aj,..., Ap+1 € R™ have the property that removing any one results in a linearly inde-
pendent set. The generalization is: Pick a point on each edge of an n—dimensional simplex, then one of the
simplices obtained by taking an original vertex and the edge points that lie on edges adjacent to it must
have volume < 1/2" of the original simplex. The generalization of this to arbitrary polyhedra is left as a

problem for the reader.

Remark 7.2. This problem is frustrating because natural geometric arguments that prove the two di-
mensional analogue to not seem to generalize well to three dimensions. As an example a simple geometric

argument is given for the two dimensional case.

Proposition 7.1. Pick a point on each edge of a triangle. Then one of the triangles formed by joining a
vertex of the original triangle to the edge points on the edges adjacent to it has area < 1/4 of the original

triangle.

Proof: If some vertex, say A, has two edge points, say D, F', at least as close to A as to the other vertices,
then the area of ADF is less than 1/4 of the original triangle. The only other possibility is that each vertex
has only one edge point closer to it. Say that D lies on AB such that AD < DB, that E lies on BC such
that BE < EC, and that F lies on C'A such that CF < FA. Moreover, let G be the midpoint of AB, H
the midpoint of BC', and I the midpoint of C'A.

C

A D G B

One now shows that the area of DEF is > to the area of GHI. Since AB and IH are parallel, it follows
that FE is either parallel to AB or meets AB at J such that AJF is an acute angle. Now let = |GD|,
then in the first case, as x increases, the area of DEF remains constant. In the second case, as x increases,
the distance of D to F'J increases, since AJF is acute. Since this equals the distance of D to F'E, it follows
that as x increases, the area of DEF increases.

One concludes that the area of DEF is non decreasing in z. Since this argument holds for |[HE| and
|IF|, it follows that the area of DEF is < the area of GHI, as claimed. Since the area of GHI is exactly
1/4 of the area of ABC, the sum of the three remaining triangles is < 3/4 of ABC, and thus one of the
triangles ADF, BDE, CEF must have area lessss than 1/4 of ABC. O

Generalizing this to three dimensions would entail finding a lower bound on the middle piece of the

tetrahedron, i.e., what remains after the four tetrahedra have been removed. However, in three dimensions,
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the volume of this piece is no longer a monotonic function of the edge points, as was the case in the above

argument. Following through with this argument is left as a problem for the reader.

Remark 7.3. If one interprets “resulting tetrahedrons” as meaning any tetrahedron formed by joining one
of the edge points to a vertex, then the solution is simple: Pick a vertex A of the tetrahedron. If the points
on the three edges from A all lie closer to A than to the other vertex on the edge, then the tetrahedron
formed by these edge points and A clearly has volume < 1/8 of the original tetrahedron. Otherwise, there is
an edge point E such that the distance from F to BCD is < 1/2 the distance from A to BCD. Now clearly,
one of the four triangles formed by the edge points at the base has area < 1/4 of the area of the base. It then

follows that the tetrahedron formed by joining this triangle to E has volume < 1/8 of the original volume.

Problem 8. We are told that a® + 4b? = 4, cd = 4. Show that (a — d)? + (b —¢)? > 1.6.

Solution: The lower bound is found as follows: The form (a — d)? + (b — ¢)? is the square of the Euclidean
distance between (a,b) and (d,c), so the question reduces to finding the minimum distance between the
curves 22 + 4y% = 4, and xy = 4. The first of these is an ellipse with axes 2,1, while the second is a
hyperbola. Clearly, this problem is symmetric with respect to the line z = —y, so one can restrict oneself
to z > —y, and, as a consequence, to the component of the hyperbola with ¢,d > 0. Thus, in the following,
“the hyperbola” will mean the point (z,y) satisfying xy = 4 and x,y > 0. The main idea is the following

simple observation:

Lemma 8.1. If a convex curve C has a tangent line L and a concave curve C' has a tangent line L' such
that L' is parallel to L and neither C' nor C' lie between L and L', then the minimum distance between C

and C' is greater than the distance between L and L'.

Proof: Note that if P is a point on C and P’ is a point on C”, then given the assumptions, PP’ must cross
L and L', so that |[PP'| is greater than the distance between L and L'. O

In order to use this, one must find points on the ellipse and on the hyperbola whose tangents have the
same slope. In order to do this, one must first compute the slope of the tangents to these curves.

Thus, consider a point (z,y) on the ellipse. Differentiating 22 + 4y? = 4 gives 2z dz + 8y dy = 0, so that
dy/dx = —z/(4y) is the slope of the tangent line at (x,y). Similarly, the slope of the tangent line at the
point (x,y) of the hyperbola is —4/z?.

One now appeals to a “trick” which consists in taking P = (v/2,1/v/2) and P’ = (2v/2,v/2). Tt turns out
that P lies on the ellipse and P’ on the hyperbola, and that the slopes of the tangent lines at P and P’ are

both equal to —1/2, as can be checked using the previous paragraph. A further simple computation shows
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that if L is the tangent line at P and L' the tangent line at (), then these lines are given by the equations
L: y:—g—l—\/i L' y:—g+2\/§.
To compute the distance between L and L', consider their intersections at the x—axis. Thus, L intersects the
r-axis at Q = (21/2,0), and L' at Q' = (41/2,0). Now from @ draw a line perpendicular to L meeting L' at
R. Since L' has a slope of —1/2 with respect to the z—axis, it follows that the z—axis (pointing to —co) has
a slope of 1/2 with respect to L' (pointing in the positive y direction). This implies that |QR|/|RQ'| = 1/2,
so that |QR|/|RQ’'| = 1/+/5, by the Pythagorean theorem. Since |QQ’| = 2v/2, one gets |QR| = 2v/2/V/5.
Since QR is perpendicular to L and L', it follows that |QR| equals the distance between L and L'. One
concludes that

(a—d>+(b—c)> > |QRP = g —16.

Remark 8.1. The minimum value of of (a — d)? + (b — ¢)? is 1.77479583276941567010. . ..

Proof: Unlike the other material in this section, the proof uses a computer algebra system, as this question
does not appear to have a closed form solution.

One proceeds along the lines used in the solution to the problem. The idea is that Lemma 8.1 clearly
implies that if M and M' lying on C and C', respectively, are such that M M’ is orthogonal to the tangents
at M and M', then |M M'| is the minimum distance between C' and C'. One therefore finds two such points.

In order to do this, one starts with a given value of a and finds points on the ellipse and the hyperbola
whose tangents both have slope —a. On the ellipse, let the tangent at M = (xq,y¢) have slope —a so that
—0/(4y0) = —a. The condition 23 + 4y2 = 4 gives

%! 1

To = —, =
T Virr1 T Vi1

Similarly, let M’ = (x1,y;) be a point on the hyperbola whose tangent has slope —a. Then —4/2% = —a,
and x1y; = 4 implies that

2
— =2 .
\/aa Y \/a

In order for M M’ to be orthogonal to the tangents one must have (y; — yo)/(z1 — 20) = 1/a. This gives

2o - s 2aA® +1-a'? 1

rp =

%_—’A;IJ;T B 2v402 + 1 — 403/2 o«

which simplifies to the equation

7

(26) 160° — 28a* —9a® +8a% +4 =0.
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This equation was examined using the computer algebra system Mathematica. The polynomial on the left
hand side of (26) is irreducible over the rationals and the computer algebra system was unable to express

the roots using radicals. The approximate roots are
—0.979691 + 0.348434, —0.04401 £ 0.4932234, 0.699695, 1.34771.

One can eliminate all but the last two possibilities. Carrying out the above argument using the last root
fails, as it ends up giving points N and N’ with a negative slope for N — N', see the figure, which means
that it cannot be orthogonal to the tangent, since it would then have slope 1/a > 0. The relevant root is

therefore the second to last which, to twenty digits, is
ap = 0.69969482002339060183. . ..

Following the above argument, one lets

4 1
M= (\/4 O;O T /io2 1) = (1.62722713282531988425 . . ., 0.58140602383297697452 . . .) ,
ag + oy +

2

M = (\/?, 2\/050) = (2.39097847459882936932 . .., 1.67295525346422891327 . . .).
0

One therefore gets the minimum value of (a — d)? + (b — ¢)? to be |M — M'|? = 1.77479583276941567010.. . ..

Problem 9. We are given a point K on the side AB of a trapezoid ABCD. Find a point M on the side
CD that maximizes the area of the quadrangle which is the intersection of the triangles AMB and CDK.

Solution: It is not clear from the statement of the problem whether AB is one of the parallel sides of the
trapezoid. Since this interpretation seems more natural, I will treat this possibility only and leave the other
case to the reader. The answer in this case is: If AB and CD are parallel, then M is chosen such that
|[DM|-|AB| = |AK| - |CD|.

D M c

A X B

Proof: Let t be the area of the trapezoid, h the distance between the parallel lines AB and CD, and let g
be the area of the quadrangle in question. The first observation is that the area of AM B plus the area of
DKC equals t. To see this, one notes that the areas of AMB and DKC are independent of M and K since
AB and CD are parallel. One can therefore take K = A and M = C, in which case ABCD is the disjoint
union of AM B and DKC.
One then uses
area (AMK UDKC) = area(AMK) + area(DKC) — ¢,
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to get ¢ =t — area (AM K U DKC). Now let E be the intersection of DK and AM, and F' the intersection
of MB and KC. One has

area (AMK UDKC) = area(AEK) + area (DEM) + area (K FB) + area(MFC) + ¢,

i = t area(AEK) + area(DEM) + area(KFB) + area(MFC)
2 2

But since AB is parallel to DC, it follows that triangle AEK is similar to triangle M ED and triangle K F'B
is similar to CF M. Now let h; be the altitude of DEM, i.e., the distance from E to DM, and hy be the
altitude of AEK, i.e., the distance from E to AK. One then has hy = hy|AK|/|DM|. Moreover, since AB
and CD are parallel, one also has h; + hs = h. One concludes that

|[DM]
|[DM|+ |AK|"

hi=h

This then implies that
_h |AK|? + |DM|?
area (AEK) -+ area (DEM) = 5 m .

One similarly gets
h |[KB|? + |MC|?
2 |KB|+|MC|
Let ¢ = |DM]|, so that |MC| = |DC| — z, then one wants to maximize

KBJ?
z+ |AK| |DC| — z + |KB| ) ’

area (K FB) + area(MFC) =

t _h (x2 +|AK|>  (|DC|—z)®+
2 4

which is equivalent to minimizing

2+ |AK?  (|DC| - 2)? + |KBJ? 2IAK|? 2|K B2
— =z —-|AK|+ ———— — |KB| -
1@ = AR Ty R vy < Bl ekl Y7ol P 792}

2|AK|? 2|K B|?

— —jap|+ 24K KB :
z+ |[AK| |DC| -z + |KBj

Solving for f'(x) = 0 gives
[AK? |KBJ

(x +|AK|)2 ~ (|DC| -z +|KB|)?’
and since all quantities are positive, one can take positive square roots to obtain |AK|-|CD| = z |AB|, which
is exactly the expression claimed above.

To complete the proof, one checks that this gives a minimum of f(z). But this follows from the fact that
4|AK|? + 4|K B|?
(x+|AK|)®  (|DC|—=z+ |KB|)

'(z) = 5 >0.
Problem 10. Can one cut a three-faced angle by a plane so that the intersection is an equilateral triangle?

Solution: In general, one cannot cut a three—faced angle by a plane so that the intersection is an equilateral

triangle.

Proof: One can take “three—faced” angle to mean the set of points {zU + yV + zW : z,y,z > 0}, where
U, V, and W are unit vectors that do not all lie in a plane. The problem is therefore to find z,y,z > 0
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such that ||zW — zU|| = ||z2W — yV|| = ||2U — yV||. Clearly, one can assume that z = 1, so the problem is
equivalent to finding x,y > 0 such that

QW —zU) - (W —2U) =W —yV)- (W —=yV), (W—-2U) - (W —2U)=(2U —-yV)-(2zU —yV).

A counter example is given by U = (1,0,0), V = (0,1,0), W = (0,1/+/2,1/+/2). Thus, assume that there
exist x,y that satisfy (27) for this choice of U, V,W. Then the left hand equation of (27) gives

xzﬂ_( _L>2+1
v2) T2

so that

Since one must have x,y > 0, the only solution is

(28) y:%+w$2+é.

The right hand equation of (27) implies that 22 4+ y? = 22 4+ 1. However, (28) implies that y > v/2 > 1, so
there is a contradiction, and this proves the result.

Remark 10.1. One can give some general conditions on the existence of a solution (a complete char-
acterization is left to the reader). In particular, it can be shown that there is a solution if either (a)
U-V,U-W,V-W<1/2,0r (b)U-V,U-W,V-W >1/2.

Proof: The idea is to solve the left hand equation of (27) by finding a solution y = f(x), z > 0, such that
y = f(z) >0 for z > 0, and f(z) is continuous. One then defines

g(z) = (W —2U)- (W —aU), hz) = (U - f@)V)- (U - f(=)V),

so that a solution exists when g(z) = h(z). In order to do this, one finds a value z; > 0 such that
g(0) — h(0) and g(x1) — h(z1) have opposite sign. Continuity will then imply that there is an o > 0 for
which g(zo) = h(zo).

To prove (a), assume, without loss of generality, that V - W > U - W. One now solves the left hand side
of (27) to get

y=V -WH+\(z— U -W))2+ (V- -W)2—(U-W)2.
Let f(x) the right hand side of this equation. Note that f(x) > 0 for z > 0, since by assumption, U -W < 0
when V.- W < 0.

Now if V- W <0, then f(0) =0, and otherwise f(0) = 2(V - W). Furthermore, g(0) = 1, while h(0) =0
if V-W =0, and h(0) =4(V -W)2 if V- W > 0. By assumption 4(V - W)? < 1, so in either case, one has
h(0) < g(0).

Now, it is clear that f(z)/z = 1 as ¢ — o0, so

g(x) =2 +1-2zx(U-W) ~ 2%,

while
h(z) = 2* + [f(@)]? = 22f(2)(U - V)~ (2-2(U - V)22 = (1+¢e)z?, >0,
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since it was assumed that U - V < 1/2. It follows that there is an 1 > 0 for which g(x1) < h(z1) and the
proof follows as outlined above.

(b) Again, assume that W -U < W - V. In this case, one solves the right hand side of (27) but this time one

takes the solution

y=V-W—=/(xe=U-W))2+(V-W)2— (U -W)2.

Let f(z) be the right hand side of this equation. It follows that f(0) =0, f(2(U -W)) =0, and f(z) > 0 for
2(U-W) >z > 0. Now g(0) =1 and h(0) = 0, so g(0) > h(0). On the other hand, g(2(U - W)) = 1 while
h(2(U -W)) = 4(U - W)% > 1, so that h(2(U - W)) > g(2(U - W)), and the result follows by continuity.

Problem 11. Let Hy, Hy, H3, Hy, be the altitudes of a triangular pyramid. Let O be an interior point of
the pyramid and let hy, hs, hs, hy be the perpendiculars from O to the faces. Show that

(29) H{ + H3 + Hy + Hf > 1024 hy - ha - h3 - hy.

Solution: Let ABCD be the tetrahedron and let its faces be Fy, Fy, F3, Fy with areas f1, f2, f3, f1, respec-
tively. Let H; be the altitude to F;, and if P is an interior point of the tetrahedron, let h; = h;(P) be the
distance of P to Fj.

Recall that the volume of a tetrahedron is %base x height (knowledge of the exact constant % is not
important here). Thus, letting V' be the volume of the tetrahedron, one has H; = 3V/f;, i = 1,...,4.
Moreover, P divides ABC D into 4 non—overlapping tetrahedra PABC, PABD, PACD, and PBCD. These
tetrahedra have volumes h; f;/3 in some order, so one also gets the identity hy f1 + ha fo + hs f3 + hafs = 3V.

i Ll

Now both sides of (29) are homogeneous of degree 4, so without loss of generality one can normalize the

tetrahedron to have volume 1/3. It follows that
(30) HZZ ral 7::1,...,47 hlfl +h2f2+h3f3+h4f4=1.

One next finds an upper bound for h; hahghs by maximizing a(yi,y2,y3, y4) = y1¥2y3y4 given the constraints
yifi +y2fo +ysfs +yafs = 1 and y; > 0 (whether this maximum is attained by an actual interior point of
the tetrahedron is left as a problem for the reader).

One observes that there will be a maximum with y; > 0 since a(y1,y2,y3,y4) vanishes if any of the y;’s
is zero. This implies that the maximum will be a local maximum, and one applies the following principle:
Let S be a smooth surface of dimension of n — 1 in Euclidean n-space and « a real valued smooth function
Ay dv

Ba W) is a multiple of the normal to S

at sg. To see why this should be true, recall that Vv points in the direction of maximum growth of v, so if

on S. Then at a local maximum sq of v, the vector Vy = (

S0 is a local maximum, then moving away from sqg along S, i.e., locally orthogonally to the normal vector at
S0, should never increase 7.
One now lets y; = 1/(4f;) + z;, ¢ = 1,...,4, and notes that maximizing « is equivalent to maximizing

B =log a. This reduces the problem to maximizing

’ —os| (g7 +) (=) (5 +=) (02)
($1,$2,153,.’L'4) = 108 4f1 + 21 4f2 + X2 4f3 + 23 4f4 + T4 s
given that

(31) 1fi +xofot+x3fs+ax4fs =0.
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One easily computes

1 1 1 1
VB(x1, 22, 23,24) = ( ) ,

1 > 1 v 1 > 1
m‘f‘ml m‘f—l'z E‘FIIJ&} m+l’4

while (31) defines a plane with normal vector n = (f1, fa, f3, f1). Equating V3 = tn, for ¢ # 0, results in

1 /1 1
i=—= |- —= i =1,...,4.
T fz (t 4)7 ? ’ 9

Applying (31) shows that in fact £y = 2 = 23 = 4 = 0. It follows that the maximum of « occurs at

-1 -1 -1 -1
y1_4f17 y2_4f27 y3_4f37 y4—4f47

and thus the maximal value of a is 1/(2% f1 f2f3f1). This implies that

1

hihohshy < ————— .
1T = 98 fi o fa fa

On the other hand, (30) implies that

11 11
Hi+Hy+H;+H{=—+—+-7+—-
1 f2 3 f3

The final result will therefore follow from the inequality

2t + 25+ 25 + 24
4

(32) 21222324 <

To prove this, one starts with (a — b)? > 0 which implies

2 b2
(33) ab< 2 ‘; .

One therefore has

% +Z%) (Zg +ZZ) < 1 (24232 + (224 20)% 120 +22222 + 25 4+ 25 + 22227 + 24
— 4 2 4 2 ’

21222324 < = -
1234_( 2 2

which leads to (32) upon applying (33) to 272% and 2323.

Problem 12. Solve the system of equations y(x +y)2 =9, y(z® —y%) = 7.
Solution: The only real solution is z = 2, y = 1.

Proof: Clearly this is a solution. To show that this is the only one, let = = ty, then the system becomes
(34) Pir+1)?=9, (2 -1)="7.

Taking the first equation to the 4th power and cubing the second and dividing yields

t+1)% _9*
t—1)3 73’

which reduces to finding the roots of

f6) =9 - 1)° =7 (¢t + 1)°.
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Any real positive root to of f(t) will yield a solution zo,yo of (34) by letting yo = (9%/(t + 1)%)/? and

xo = toyo. Conversely, the above shows that every solution of (34) yields a positive real root of f(t).
Clearly, t = 2 is a root of f(t), and this corresponds to the solution z = 2, y = 1. By the previous

argument, one only has to show that f(¢) has no other positive real root. This can be done by directly

computing

% = 6561¢° + 12779¢" + 22814¢° + 16341t> + 13474¢* + 2938t + 6351¢° + 3098t + 3452,

and noting that all the coefficients are positive so there is no other positive real root. This computation can

be done in a straightforward way by expanding
f(t) = 6561t — 343t — 274417 — 29287t% — 19208¢> — 24010t* + 475> — 9604t> — 2744t — 6904,

and then doing a long division by ¢ — 2. Such a computation was achieved in full during a train ride from
THES to Paris. Moreover, the fact that division by ¢ — 2 must leave a zero remainder provides an internal

check for the computation.

Problem 13. Show that if a,b, ¢ are the sides of a triangle and A, B, C are its angles, then

a+b—20+b+c—2a+a+c—2b>0
sin(C'/2) sin(A/2) sin(B/2) =

Solution: By collecting terms, one can rewrite the expression as

(a—-b) (sin(lB/2) - sin(114/2)) +la—o) (sin(é’/2) - sin(il4/2)) +b-o) (m(é/z) - sin(lB/2)) '

One now observes that each summand on the right is nonnegative.

C

In fact, consider a triangle ABC with sides a = BC, b = AC, ¢ = AB. Then b > q if and only if
/B> (A, and since A, B < 180°, if and only if sin(B/2) > sin(A/2). It follows that

1 1
(a=1) <sin(3/2) - sin(A/2)> 20

Since this is true for any two sides and corresponding vertices, it holds for the other terms and the result

follows.

Problem 14. In how many ways can one represent a quadrangle as the union of two triangles?
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Solution: If the quadrangle is convex then there are exactly two ways, and if it not convex then there are
an infinite number of representations.

Proof: First consider a convex quadrangle ABCD, and assume that ABCD is the union of two triangles

T1 and T2.
L C C

D D D

JAY R A BT BT R A

First one shows that one of the triangles must contain three vertices. For if this were not the case, then
each of the triangles would contain exactly two vertices leading to two cases.

In the first case, each triangle contains two vertices on the same edge of the quadrangle. Without loss of
generality, assume that 77 contains AB and T» contains C'D. Since a triangle is a closed convex set, and DA
is not contained completely in 77, there is a point E in the interior of AD for which AE C Ty but ED — {E}
is not C T7. This condition implies that F is a vertex of T;. Since a triangle is convex and the quadrangle
is convex none of the sides AE, BE, or AB of Ty can be extended outside of ABCD, so it follows that
T, = ABE. Similarly, there is an F' in the interior of AD such that T> = CDF. However, this shows that
T, U T5 does not include the interior of BC, so this case is not possible.

In the second case, each triangle contains opposite vertices of the quadrangle. Without loss of generality,
assume that 77 contains A and C and T3 contains B and D. By assumption, AB is not completely contained
in Ty or Ty, so as above, there is a point E in the interior of AB which is a vertex of T; and T} = AEC.
Similarily, there is a point F in the interior of AB such that T, = BDF'. This again implies that 77 U T3

does not contain the interior of BC', so this case is not possible either.

It follows that one of the triangles contains three vertices. Without loss of generality, assume that this is
T: and that the vertices are A, B, C. Since the quadrangle is convex, none of the edges AB, AC, or BC can
be extended and still remain in T} so Ty = ABC. Tt follows that BDA C T5, and since none of the edges of
BDA can be extended, one has that BDA = T5.

Thus, each choice of three vertices of ABCD yields a partition into two triangles. There are 4 such
choices, but two of these are equal by symmetry, so there are two choices: ABC U BDA and ABD U BCD.
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Consider the case where the quadrangle is not convex. Let the quadrangle be ABCD, where the angle
B is greater than 180°. Now extend AB so that it cuts CD at E and extend CB so that it cuts AD at F.
Also, let G be any point on BF and H be any point on ED. For any such choice, the quadrangle is the
union of the triangles AED and CGH.
Remark 14.1. It seems clear that the examiners only meant non—overlapping triangles (note that the two
triangles can never be disjoint). The “trap” was to only consider convex quadrangles (which some students
actually fell into [20]), but the examiners were in fact trapped by failing to consider the most general case.

In the non—convex case, there are three ways to represent the quadrangle as a union of non—overlapping
triangles which, using the above notation, are ABDUCBD, AEDUCBE, and ABFUCFD. The argument

is similar to the convex case and is left to the reader.

Problem 15. Show that the sum of the numbers 1/(n3 + 3n® + 2n) for n from 1 to 1000 is < 1/4.

Solution: The factorization n? + 3n% + 2n = n(n + 1)(n + 2) leads to the partial fraction expansion

1 _1(1 1y, 1 1
n3+3n2+2n 2 \n n+2 n+1 n+2°
Now let N > 3, e.g., N = 1000, then

e ) £ (s
n3+3n2+2n 2 n n+2 n+l n+2)°
n=1 n=1 n=1

Each sum reduces by telescopic summation and this gives

L] 1 1 1 1 1, 1 11 1 1
2 2 N+1 N+2 2 N+2) 4 2(N+2) 2(N+1) 4 2(N+1)(N+2) 4°

Problem 16. Solve the equation z* — 1423 + 662> — 115z + 66.25 = 0.
Solution: The roots of 2* — 14z + 6622 — 115z + 66.25 are

T+ T+ T—1 7T—1
%4—\/44—2@', %—\/4%2', TZ+\/4—2¢, TZ—\/4—27:, where i = v/—1.
Proof: Let f(z) = 2* — 14z + 6622 — 1152 + 66.25. Letting x = y/2 reduces f(z) = 0 to g(y) = 0, where

g(y) = y* — 28y + 264y — 920y + 1060 .
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One removes the cubic term by letting y = z 4+ 7 so that g(y) = 0 is reduced to h(z) = 0, where
h(z) = 2* — 3022 + 322 + 353..

Now h(z) = 2* — 2 — 1 (mod 3), which is easily seen to be irreducible modulo 3. It follows that f(z) is
irreducible over the rationals, so there is no very easy solution to this problem. However, since this is an
examination problem (one conjectures that students were not expected to be familiar with the solution to
the general quartic), there might still be an “easy” solution. In particular, one could hope that f(x) factors

over a quadratic extension of the rational numbers. With this in mind, one writes
(35) 24 —30224+32:4353=(2>+aVDz+b+cVD) (2 —avVDz+b—cVD),

where a, b, ¢, D are integers (more generally, b and ¢ could be half-integers) and D is squarefree. Equating

terms in (35) one gets the conditions
(I) 2b — a®’D = —30, (II) —2acD =32, (III) b* — *D = 353.

From (IT) one concludes that D must be one of —2,2,—1. If D = —2, then (III) has the solution b = £15,
¢ = £8. But then, (I) would imply that a is divisible by 15, which is inconsistent with (II). If D = 2, then
(ITI) has the solution b = £19, ¢ = £2 (other solutions can be easily excluded). But then a = 4 which is
inconsistent with (I). Finally, if D = —1, then (III) has the solution b = £17, ¢ = £8, and (II) implies that
a = £2. Trying out all the possible sign combinations, one eventually finds that a = -2, ¢ = -8, b = —17
solves (I), (II), and (III). One therefore has the factorization

(36) 2t — 3022 4+ 322 + 353 = (2% — 2z — 17 — 8i) (2% + 2iz — 17 + 8i).

Applying the quadratic formula to each term yields roots z = i &+ 2v/4 + 2{ for the left factor of (36) and
z = —i £ 2y/4 — 21 for the right factor of (36). The final answer follows on substituting z = (z + 7)/2.

Problem 17. Can a cube be inscribed in a cone so that 7 vertices of the cube lie on the surface of the

cone?
Solution: It is not possible to inscribe a cube in a cone so that 7 vertices of the cube lie on the cone.

Proof: If this were possible, then there would be a face ABC' D with all vertices on the cone, and the parallel
face EFFGH would have at least 3 vertices on the cone. Now the face ABCD lies on a plane which cuts
the cone in a conic section, i.e., either in a hyperbola, parabola, ellipse, or two intersecting lines. Only an
ellipse can circumscribe a square at 4 points, therefore, the intersection is an ellipse, say F;. Since EFGH
is parallel to ABC D, it lies on a plane which also intersect the cone at an ellipse, say Fs.

Now if ABCD is symmetric with respect to Ep, i.e., its sides are parallel to the major or minor axes
of Ey. Since ABCD, EFGH are parallel and F; and E, are parallel, it follows that EFGH is symmetric
with respect to E». This implies that the vertices of EFGH can meet Ey at either 0, 2, or 4 points. This
implies that EFGH meets Es at 4 points. However, it is clear that there is a unique square that is inscribe
symmetrically in an ellipse. Since E; and FE, are parallel, they are similar, i.e., the ratio of their axes is the
same, so the fact that they inscribe the same square implies that they are equal. This is clearly impossible,
as different parallel sections of a cone must be different. It should also be noted that this also implies that F;

cannot be a circle. The only other possiblity is that ABCD is not symmetric with respect to E;. However,
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this cannot happen as every inscribed square in an ellipse must have its sides parallel to the major or minor

axes.

In order to prove this, without loss of generality, consider an ellipse 22 + y>/a®> = 1, a > 0, and a line
y = mz + b, m # 0. If these intersect at (x,y), then (a? + m?)z? — 2mbz + b2 — a® = 0, so the intersection

points are

a? +m?2 a?z +m?2

I (—mb—a\/az-i-m2—b2 baz—am\/a2+m2—b2)

a? +m?2 aZz +m?2

J_(—mb+am ba2+am\/m)

The length of the chord I.J is then

2a+/(1 + m?) (a® + m? — b?)
a? + m?

It follows that given a and m, the only way to get two equal chords is to take y = mz + b and y = mx — b

(this corresponds to the symmetry of the ellipse). The solutions corresponding to —b are

- (mb—a\/a2+m2—b2 —ba2—am\/a2+m2—b2>

a? +m?2 ’ a? 4+ m?2

I (mb+a\/a2+m2—b2 —ba2+am\/a2+m2—b2>

a? +m? ’ a? + m?
If these 4 points are to lie on a square then the angle K'LJ must be 90°, in other words, the slope of LJ
must be —1/m since the slope of KL is m. Since

_op2
L—J:( 2mb 2ba ),

a2 +m?2’ a? +m?

this slope is —a?/m. It follows that a® = 1, which implies that the ellipse is a circle. However, this contradicts

the assumption that the ellipse circumscribes the square asymmetrically, and completes the proof.

Problem 18. The angle bisectors of the exterior angles A and C of a triangle ABC intersect at a point
of its circumscribed circle. Given the sides AB and BC, find the radius of the circle. [From [19]: “The

condition is incorrect: this doesn’t happen.”]

Solution: As indicated by A. Shen, the statement is incorrect. In fact, the following is true: In a triangle

ABC, the angle bisectors of the exterior angles of A and C' cannot meet on the circumscribed circle of ABC'.
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Proof: Let the exterior angle bisectors of A and C meet at the point D. If D were to lie on the circumscribed
circle of ABC, then ABCD would be a cyclic quadrilateral. One appeals to the fact that in a cyclic
quadrilateral the sum of opposite angle is 180° (this result seems well-known and the easy proof is left to the
reader). One now observes that the angle BAD is equal to (180° — A)/2+ A = 90° + A/2 and similarly the
angle BCD is 90° + C/2. It follows that the sum of the angles BAD and BCD is 180° + (A + C)/2 > 180°,

which is a contradiction.

Problem 19. A regular tetrahedron ABCD with edge a is inscribed in a cone with a vertex angle of 90°
in such a way that AB is on a generator of the cone. Find the distance from the vertex of the cone to the
straight line C'D.

Solution: The statement of the problem is incorrect as the tetrahedron cannot be inscribed in the cone.
Inscribing a tetrahedron in the cone means that all its vertices lying on the cone and that, apart from its
vertices, it lies entirely inside a connected component of R® minus the cone. As will be seen below, this is
not possible. If one takes “inscribe” to mean only that the tetrahedron has all its vertices on the (double)

V34a

cone, then the answer is 84“‘ However, this interpretation would imply that a cube could be inscribed in

a cone, contradicting the result of Problem 17.

Proof: Without loss of generality, one can take the cone to be given by the equation 2 + y2? = 22 and the
generator to be the line x = 0, y = z. Moreover, one can take the tetrahedron to have side length = 1, so
that for a tetrahedron of side a, the answer will be a times the answer for this case. Since A and B lie on the
generator, one can assume, without loss of generality, that A = (0,¢,t), B = (0,t+1/v/2,t+1/+/2). Letting

C= <—1,t—1+i,t+l+i), D= <l,t—1+i,t+1+i),
272 2y27 2 22 272 227 2 22

it is easily checked that ABCD is a regular tetrahedron. In order that C' and D lie on the cone, one must
solve

1 (t_1+i)2= (t+1+i)2

4 2 22 2 2v2) 7
which has the unique solution ¢, = 1/8 — 1/4/8. It follows that the tetrahedron must have vertices

1 1 1 1 1 1 1 1 1 35 1 35
a=(05-pi-v8) 2= (armery) o~ (ows) P-(a-vd)

Since 1/8 < 1/+/8, it follows that the interior of AB and the interior of CD lie on two different components
connected components of R® minus the cone, so that ABCD is not strictly inscribed in the double cone. In
any case, the midpoint of CD is (0, —3/8,5/8) so that the distance from the vertex (0,0, 0) to CD is v/34/8.

One must also consider the possibility of inscribing the tetrahedron asymmetrically by rotating it about

y = z. However, the intersection of the cone with the possible rotations of the C' and D about y = z form a
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circle which lies in a plane orthogonal to the generator of the cone. Since the cone has vertex angle 90°, the
intersection of this plane with the cone is a parabola. A circle and a parabola can intersect at two points at

most, so this implies that any intersection point must be symmetric, and there are no other solutions.

Remark 19.1. The following shows how one was led to the original construction of C' and D. One begins
with a simple result about regular tetrahedra.

Lemma 19.1. Let ABCD be a regular tetrahedron and ¢ be the angle between AB and AC + AD, i.e.,
the angle that a side from the base to the summit makes with the base, then ¢ = arccos1/+/3.

Proof: This is clearly equivalent to showing that for a regular tetrahedron of side 1, the distance of the
summit to the base is 1/2/3. Thus, let A = (0,/3/2,0), B = (0,y,2), C = (-1/2,0,0), D = (1/2,0,0).
One has ||C — B|| =1 and ||A — BJ| =1, so that

y2+z2:

=W
7N
8
|
|G
~
(V)
+
[V}
|
—_

Clearly B = (0,1/(2v/3),/2/3) solves these equations, and this proves the Lemma 19.1. O

In order to inscribe the tetrahedron in the cone, one translates it by (0, —v/3/2,0) so that it has vertices
A =(0,0,0), B = (0,-1/v/3,/2/3), C = (-1/2,—+/3/2,0), D = (1/2,—+/3/2,0). In this position, B has
angle ™ — ¢ in the y—z plane and one wants it to have angle 7 /4, so one rotates the tetrahedron ¢ = ¢ — 3w/4
degrees with respect to the x axis, then slides it up the cone by adding (0, k, k). Let R, be the rotation,
then one is solving for k such that R, 4(C) + (0,k, k) lies on z? + y* = 2%

It only remains to compute R, ;(C), which follows from

1 0 0 1 1
Ry y(C)=10 cosyp —sing —? = _%4_7
0 siny cos® 0 % %/_
using
COS¢_COS3FCOS + sin 7TSin = L + 1 sin¢—cos3—ﬂsin —sing—ﬁcos ——L—i

Problem 20. Let log(a,b) denote the logarithm of b to base a. Compare the numbers log(3,4) - log(3,6) -
.-log(3,80) and 2 log(3,3) - log(3,5) - ... -log(3,79)

Solution: log(3,4) - log(3,6) - ... - log(3,80) > 2 log(3,3) - 1log(3,5) - ...-log(3,79).

Proof: Since there are the same number of log(3,-) terms on each side, the base 3 in the logarithm can be

cancelled out and the above is equivalent to
log4 -log6-...-log80 > 21log3-logh-...-log79.

Taking logarithms of both sides, leads to the equivalent statement

40 40
(37) Z log log(2k) > log 2 + Z loglog(2k — 1) .
k=2 k=2
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The proof of this will rely on two basic facts: that loglogx is concave for > 3 and that

41 di
(38) /2 (2z — 1)log(2z — 1) = log2.

To see that loglog x is concave for > 3, note that

d? 1 1
Eloglong; l_log:c >0, z>e.

In order to prove (38), note that

/41 dz _ loglog(2z — 1) 4 _ loglog81 —loglog3 log2
, (z—1)logz—1) 2 , 2 Bith
From the concavity of loglog x one has for k > 2,
loglog(2k + 1) + loglog(2k — 1
loglog(2k) > oglog(2k + )—; 0g10g( ) .
Subtracting loglog(2k — 1) from each side gives
loglog(2k + 1) — loglog(2k — 1
log log(2k) — loglog(2k — 1) > 128108k + 1) - og2k—1)
But the right hand side of this is exactly equal to
k+1 k+1
1 dz
— loglog(2x — 1 = .
3 loglog(2z —1) . /k (22 — 1) log(2z — 1)
It follows that
20 41 dz
loglog(2k) — loglog(2k — 1 =log2
> llog log(2t) ~loglog(2k ~ ] > | it ot = Tog2.
k=2

by (38). This last inequality is exactly (37) and the result follows.

Problem 21. A circle is inscribed in a face of a cube of side a. Another circle is circumscribed about a

neighboring face of the cube. Find the least distance between points of the circles.
Solution: The minimum distance is a/+/20 + 8v/6.
Proof: It is sufficient to treat the case of a = 2, as the solution is linear in a. One can thus consider the

cube to have vertices at (+1,£1,+1) and that the inscribed circle is given by (cost,sint, 1), 0 < ¢t < 27, and
that the circumscribed circle is given by (1,/2 sinu,v/2 cosu), 0 < u < 27. The minimum distance will

therefore be the minimum of \/ (cost —1)2 + (sint — /2 sinu)? + (1 — v/2 cosu)2. One therefore minimizes
(39)  (cost — 1)+ (sint — v/2 sinu)? + (1 — V2 cosu)? = 5 — 2cost — 2v/2sintsinu — 2v/2 cosu.

This is equivalent to maximizing
(40) cost 4+ v/2sintsinu + v2cosu.

One does this by first considering u to be constant, and maximizing over ¢, and then maximizing over u.

This requires the following

Lemma 21.1. Let a and 3 be real numbers, then

max (acost+ Bsint) = /a2 + 32.

te[0,2n)
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Proof: Let v = /a2 + 2, then there is a ¢ such that a/y = siny and /vy = cosp. It follows that
acost + Bsint = ysin(t + @), which immediately implies the result. O

Continuing with the proof, Lemma 21.1 shows that the maximum of (40) is v/1 + 2sin®u + /2 cosu,
which can be rewritten as v/3 — 2cos?u + /2 cosu. Since cosu takes on all values in [—1,1], maximizing

this last form over w is equivalent to maximizing

(41) V3—222 +V2z, ze€[-1,1].

One checks for critical points by taking the derivative and setting it equal to zero. This gives

2z
\/—_3—2x2 =0,

so that = v/3/2, and the resulting value in (41) is v/6. Since there is only one critical point in [—1, 1] the
only other possible maxima are at = %1, but these give 1+ v/2 which are both smaller than v/6.
It follows that the maximum value of (40) is v/6 and plugging this back into (39) gives the minimum

value

1
5-2v6=—— .
5+ 26

The result then follows by substitution.

Remark 21.1. A. Shen [20] notes that there is an elegant solution to the problem: Consider two spheres
with center at the center of the cube with each containing one of the circles mentioned in the problem.
Clearly, the distance between the circles cannot be less than the distances between the spheres. On the other
hand, it is easy to see that there is a ray from the center that intersects both circles. It follows that this

distance is minimal.

Problem 22. Given k segments in a plane, show that the number of triangles all of whose sides belong to

the given set of segments is less than C k*/2, for some constant C' > 0.

Solution: One has to interpret this as asking for triangles whose edges exactly belong to the set of given
segments, see Section 4.

The problem is equivalent to bounding the number of triples {a,b}, {b,c}, {c,a}, where {a,b}, {b,c},
{¢,a} correspond to the endpoints of 3 distinct segments. Under this formulation it becomes clear that the
fact that the e; are line segments is unimportant and that the problem rests on the fact that each e; joins its
2 endpoints. In other words, one is really considering a (combinatorial) graph V with vertices the endpoints
of the segments and edges the e;’s. The problem can therefore be restated as: Let V' be a graph, then the
number of triangles in the graph is < C k3/?, where k is the number of edges in the graph. Note that a

triangle in a graph is a simply a set of 3 vertices that is completely connected. The main idea is the following

Lemma 22.1. Given a graph with k edges, the number of undordered pairs of distinct triangles which have

a common edge is < 2 k2.
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Proof: Let eg, ..., e be the edges. To each unordered pair of edges (e, e'), where e = {u,v} and e’ = {u',v'},
one associates the 4 pairs of triangles

{wou',u'v'u},  {vud u'v'v}, {uod' v'u'u},  {ow’ v'u'v} .

Thus each unordered pair of edges gives rise to at most 4 pairs of triangles with a common edge. Moreover,
it is clear that any pair of triangles with a common edge will be generated in this way. It follows that the
number of pairs of triangles with a common edge is < 4 times the number of unordered pairs of edges. Since
the number of unordered pairs of edges is k(k — 1)/2 < k?/2, the result follows. O

Now given a graph V, let T be the total number of triangles, and for each edge e, let t, be the number
of triangles containing e. For each edge e, the number of pairs of triangles having e as a common edge is

te (te —1)/2. Since distinct triangles cannot have more than one edge in common, the estimate of Lemma 22.1
implies

te(te_l) 2
— = < 2k°.
> g <2k

€

A simple computation shows that ¢t < ¢(¢ —1)/2 for ¢ > 3, so
(42) Zt2<4k2+2t <4k2+z +221<6k2+2k<7k2

since ), 1 = k is the number of edges (it is assumed that k > 3, otherwise there are no triangles). Now
(43) (Zte) <2) ) tete <2 Zt2<14k3
e te to<te

by (42). One concludes, by noting that each triangle contains exactly 3 edges, so that

D te=3T.
e

Plugging this into (43) one obtains

TS k3/2

e

which gives the result with C' = v/14/3.

Remark 22.2. Ofer Gabber has noted that the above method can be improved to give the optimal constant

C = v/2/3. This can be done using almost exactly the same techniques as follows (Ofer Gabber used a
different approach). As before, one begins with

Lemma 22.2. Given a graph with k edges, the number of ordered pairs of triangles which have a common
edgeis < 2k(k—1).
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Proof: One considers ordered pairs of distinct edges. Thus, let (uv,u'v') be an ordered pair of edges. First
assume that none of u,v equals u',v'. Then, as in the above, one can make at most 4 ordered pairs of
triangles with a common edge, where one always lets the triangle containing uv be the first component of
the pair. However, any such pairs of triangles, if they exist, will be counted twice in total. For example, if
the triangles uvu' and w'v'u exist, then u'v and uv' are edges, so that the ordered pair (uvu',u'v'u) will also
be counted by (u'v,uv").

Next assume that one of u, v equals one of u', v, without loss of generality, say ' = u. Then the possible
pairs of triangles one can construct are {uvv’,uvv'}, i.e., the two triangles are equal, and pairs {uvw, v'uw},
where w is another vertex unequal to u, v, v'. This last possibility will already have been counted twice above
by the ordered pairs (uv,v'w) and (vw,v'u) with distinct vertices, so can be left out of this count. In the
first case, the pair of {uvv’, uvv'}, if it exists, will be counted 6 times: once by each of (uv,uv'), (wv', uv),
(vu,vv"), (V' vu), (Vv v'u), (V'u,vv").

Now let M be the number of ordered pairs of edges with no common vertex and N be the number of
distinct ordered pairs of edges with a common vertex. Once again, one let t. be the number of triangles

containing the edge e. The above shows that

ZZtt—l ) < 4M, Zt<N

The second inequality follows from the above argument and the fact that )__t. counts each triangle 3 times.
It follows that
(44) Y #2<2M+2N < 2k(k-1),

since M + N = k(k — 1) is the number of ways of choosing distinct pairs of edges. O

One applies the improved inequality (better known as the Cauchy—Schwarz inequality)

(300) <[4 ()

and (44) to get
(Zt ) < 2K%(k - 1),
and the result follows as before.

The fact that the value C' = /2 /3 is optimal is proved by considering the complete graph with n vertices
which has ¢, = n(n — 1)/2 edges and 7,, = n(n — 1)(n — 2)/6 triangles, so that Tn/82/2 —/2/3, as n — oo.

Remark 22.2. The argument directly generalizes to show that for each n, there is a constant C,, such that
the number of n-gons all of whose sides belong to the segments is < C,, k¥"/2. In fact, Lemma 22.1 already

proves this for n = 4.

Remark 22.3. Igor Rivin has proved all the above results using algebraic methods, i.e., using the spectral
theory of the adjacency matrix [18]. Moreover, this paper proves the analogous optimal results for higher

length cycles.

Problem 23. Use ruler and compasses to construct, from the parabola y = 22, the coordinate axes.
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Solution: Let A = (a,a?) and B = (b,b?) be two points on the parabola. One can draw the line segment
joining AB with ruler and compass. This line has slope (b* —a?)/(b—a) = a+b. Let C = (c,c?) be a third
point on the parabola unequal to A or B. One can then use ruler and compass to draw a line L through C
parallel to AB and say that this line meets the parabola at D = (d,d?). Since C'D has the same slope as
AB, it follows that a + b = ¢ + d. One can then use ruler and compass to construct E, the midpoint of AB
and F, the midpoint of CD. Tt follows that E = ((a + b)/2, (a®> + b?)/2) and F = ((c + d)/2, (c* + d*)/2).

Using ruler and compass one constructs the line segment EF'.

Since a + b = ¢ + d, it follows that EF is parallel to the y axis. Using ruler and compass, one constructs a
line L' perpendicular to EF through E. Let L' meet the parabola G and H. Using ruler and compass, one
construct 7, the midpoint of G, and then draws the line L" through G which is parallel to EF. It follows
that L" is the y axis. Let L" intersect the parabola at J. Using ruler and compass, one constructs the line

L"" through J which is perpendicular to L". Then L" is the z-axis.

Problem 24. Find all a such that for all z < 0 we have the inequality ax®> —2x > 3a — 1.
Proof: The condition is that 0 < a < 1/3.

Proof: By letting x — —=z, the condition is equivalent to characterizing a for which
(46) ar®+2x>3a—1, x>0,

holds. If 0 < @ < 1/3, then 3a — 1 < 0 so the right side of (46) is non—positive, while the left side is positive,
so the inequality holds. On the other hand, if @ > 1/3, then 3a — 1 > 0, so there is a small positive value of
x for which (46) fails. Thus, if 1 > a > 1/3, then one can take z = (3a — 1)/3, since

ar’® +2x <3x<3a—1.

If @ > 1, then one can take z = 1/(3+/a) since

1 2
ar’ +2r=-4+-—"—"=<1<3a—1.

9" 3/a

Finally, if a < 0, then az? + 22 — —o0 as  — oo, i.e., (46) fails for all sufficiently large z.

Problem 25. Let A, B,C be the angles and a,b, ¢ the sides of a triangle. Show that

go° < WAFOB+C g0
a+b+ec
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Solution: Since A + B + C = 180°, the statement can be rewritten as

A+B+C _aA+bB+cC _A+B+C

4
(47) 3 - a+b+ec ~ 2

To prove the right hand inequality, one multiplies by 2(a + b + ¢) to get the equivalent statement
Ab+ Ac+ Ba+Bc+Ca+Cb—Aa—Bb—Cc>0.
Collecting terms, this can be rewritten as
Albb+c—a)+Bla+c—=b)+C(a+b—-¢c) >0.

One now observes that each summand is positive. This follows from the triangle inequality which implies
that b4+ ¢ >a, a4+ ¢ > b, and a+ b > c. One can therefore conclude that the inequality on the right of (47)
is strict.

To prove the left hand inequality, one multiplies by 3(a + b + ¢) to get the equivalent statement
2aA +2bB +2cC —aB —aC —bA—bC —cA—cB>0.
Collecting terms, this becomes
(A=B)la=b)+(A-C)la=c)+(B-C){(b—¢c) >0.

One now observes that, as in Problem 13, each of these terms is non—negative. For example, a > b if and
only if A > B, so (A — B)(a — b) > 0, and similarly for the other terms.
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4 Notes

Problem 1. This problems appears to be a standard result in elementary geometry, “the butterfly theorem”
[4, Problem 10.13.33] (French edition only), [6, p. 409] [9] [10] [14]. However, this result was not included in
any standard geometry textbooks used by the candidates [20]. In [10], it is stated that a proof was given in
1815 by W.G. Horner (of Horner’s method for polynomials) and that the shortest proof depends on projective
geometry [9, p. 78]. Marcel Berger [4, Berger2] has stated that the butterfly theorem is a good example of a
deceptive result. In particular, it is a statement about circles and lengths which lead one to look for a metric
proof. However, as is seen above such arguments are quite awkward, whereas the correct point of view is
projective. A projective generalization is given in [9] and [6]. Using the notation of the problem, this can be
stated as: Let AB be a chord of a conic section and let M N, ST be chords whose intersection does not lie
on AB. If MN and ST both intersect AB at K and SN intersects AB at () and MT intersects AB at @,
then K has the same harmonic conjugate with respect to P and @) and with respect to A and B.
The proofs of Pavol Severa and David Ruelle both seem to be candidates “for the book” [1].

The first solution found by the author proceeded by converting it into a purely algebraic framework (the
same is true for problem 2. This has the advantage of almost guaranteeing a solution, even if one has missed
the “idea” of the intended solution (this is confirmed by the fact that this in fact worked). Moreover, the
“conceptual” solution of problem 1 used intermediate results, e.g., Lemma 1.2, which seemed to be as subtle
as the original statement, whereas the algebraic proof was fairly direct.

However, algebraic methods have the disadvantage that they require much algebraic computation in
which any slight error destroys any possibility of obtaining the solution. Morever, in order to keep the
computations at a manageable level, one must be somewhat clever in setting up the algebraic formulation,
as well as deciding how to proceed with the computation, e.g., see the solution to problem 2. On the other
hand, these considerations vanish almost completely if one allows oneself the use of a computer algebra
system. Using such a system, the answer follows almost immediately from the algebraic formulation. One
can argue that such proofs are more in the nature of verifications, in particular, they may not reveal how

the result was orginally discovered. These issues are discussed in [11] [23].
Problem 3. This question appears as problem 10.13.11 in [4, Vol. 1].

Problem 4. This question is a special case of a problem of Erdés and Woods [12] [22]. Thus, for an integer
k > 2, one considers m, n for which m+14,n+1¢ have the same prime divisors for i = 0, ...,k —1. The problem
in question is &k = 2 for which all the known examples are given in the above solution. It is conjectured
that there exists a & > 2 such that if m + i,n + ¢ have the same prime divisors for ¢ = 0,...,k — 1 then
m = n. This conjecture has applications to logic [22]. This question and its generalizations has been studied

by Balasubramanian, Langevin, Shorey, and Waldschmidt [2] [3].
Problem 5. In the formulation of [19], the word “perimeter” is given as “circumference.”

Problem 6. In [19], the condition 0 < # < 7/2 is omitted which renders the condition invalid. To see
this, note that the left hand side of (23) equals zero when = 7/2, but the derivative of the left hand side
at * = 7/2 is —16/73 < 0, so there is a small ¢ > 0 for which the left hand side of (23) is negative in
(m/2,m/2 +¢).

Problem 8. In [19], the condition is incorrectly given as a®? + b2 = 4, cd = 4, and the corresponding
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statement is false. In fact, the minimum value of (a — d)? + (b — ¢)? is 4(3 — 2v/2) which is smaller than 1.6
and is actually smaller than 1, since
4
—< 1.
3+2v2

The minimum value in this case is found as in the solution of Problem 8 given above: One is computing the

4(3 —2v2) =

distance between the curves z2 + y2 = 4, and 2y = 4. The first of these is a circle of radius 2, while the
second is a hyperbola.

Let L be the line # + y = v/2, then this is clearly a tangent to the circle since it meets the circle at the
point (v/2,4/2) and is perpendicular to the radius. Likewise, the line L’ given by x 4+ y = 4 is tangent to
xy = 4 since it meets it at (2,2) and the slope of y = 4/z at x = 2 is —4/(2%) = —1.

Lemma 8.1 implies that the minimum distance between the two curves is > the distance between L
and L'. However, the line joining (v/2,v/2) and (2,2) has slope 1 so is perpendicular to L and L', thus
the distance between these two points will be the actual minimum distance between the curves. One then

computes the minimum distance to be

22 -v2)2=v2(2-Vv2) =2v2-2,
so that the minimum of (a — d)? + (b —¢)? is
(2v2-2)2 =4(3-2V2),
as claimed.
Problem 14. In [19], the examiners were incorrectly given as Ugol’nikov and Kibkalo.

Problem 15. In [19], the examiners were incorrectly given as Ugol’nikov and Kibkalo.

Problem 21. In [19, p. 7], this is given as an example of a “murderous” problem, as it was the most difficult
problem of the second round of the All-Union Olympiad in 1985. It was solved by 6 participants, partly
solved by 3, and not solved by 91.

Problem 22. In [19], the original formulation was: Given k segments in the plane, give an upper bound for
the number of triangles all of whose sides belong to the given set of segments. [Numerical data were given,

but in essence one was asked to prove the estimate O(k*®).]

This formulation has the typographical error O(k'%) for O(k!-).

Parting thought: The following is my own suggestion for the type of problem considered in this paper and
I leave it as an exercise for the reader: Consider two triangles whose perimeters add up to a constant. What
is the minimum value of the sum of the squares of the lengths of the edges of their symmetric difference

(points which belong to exactly one triangle)?
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