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Preface

The last twenty five years have seen an explosion of interest in the study
of nonlinear dynamical systems. Scientists in all disciplines have come to
realize the power and the beauty of the geometric and qualitative techniques
developed during this period. More importantly, they have been able to apply
these techniques to a number of important nonlinear problems ranging from
physics and chemistry to ecology and economics. The results have been truly
exciting: systems which once seemed completely intractable from an analytic
point of view can now be understood in a geometric or qualitative sense rather
easily. Chaotic and random behavior of solutions of deterministic systems is
now understood to be an inherent feature of many nonlinear systems, and the
geometric theory developed over the past few decades handles this situation
quite nicely.

Modern dynamical systems theory has a relatively short history. It be-
gins with Poincaré (of course), who revolutionized the study of nonlinear
differential equations by introducing the qualitative techniques of geometry
and topology rather than strict analytic methods to discuss the global prop-
erties of solutions of these systems. To Poincaré, a global understanding of
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the gross behavior of all solutions of the system was more important than the
local behavior of particular, analytically-precise solutions. Poincaré’s point
of view was enthusiastically adopted and furthered by Birkhoff in the first
part of the twentieth century. Birkhoff realized the importance of the study
of mappings and emphasized discrete dynamics as a means of understanding
the more difficult dynamics arising from differential equations.

The infusion of geometric and topological techniques during this period
gradually led mathematicians away from the study of the dynamical sys-
tems themselves and to the study of the underlying geometric structures.
Manifolds, the natural “state spaces” of dynamical systems, became objects
of study in their own right. Fields such as differential topology and alge-
braic topology were born and eventually flourished. Rapid advances in these
fields gave mathematicians new and varied techniques for attacking geomet-
ric problems. Meanwhile, the study of the dynamical systems themselves
languished in relative disfavor, except in the Soviet Union, where mathe-
maticians such as Liapounov, Pontryagin, Andronov and others, continued
to study dynamics from various points of view.

All of this changed around 1960, due mainly to the influence of Moser
and Smale in the United States, Peixoto in Brazil and Kolmogorov, Arnol’d
and Sinai in the Soviet Union. Differential topological techniques enabled
Smale, Peixoto and their followers to understand the chaotic behavior of a
large class of dynamical systems known as hyperbolic or Axiom A systems.
Geometry combined with hard analysis allowed Kolmogorov, Arnol’d and
Moser to push through their celebrated KAM theory. Smooth ergodic theory,
topological dynamics, Hamiltonian mechanics, and the qualitative theory of
ordinary differential equations all developed as disciplines in their own right.

More recently, dynamical systems has benefited from an infusion of in-
terest and techniques from a variety of fields. Physicists such as Feigen-
baum have rekindled interest in low dimensional discrete dynamical systems.
Breakthroughs in mathematical biology and economics have attracted a di-
verse group of scientists to the field. The discovery of stably chaotic systems
such as the Lorenz system from meteorology have convinced scientists that
there are many more stable types of dynamical behavior than just stable
equilibrium points and limit cycles. And, by no means least of all, computer
graphics has shown that the dynamics of simple systems can be at once
beautiful and alluring.

All of these developments have made dynamical systems theory an at-
tractive and important branch of mathematics of interest to scientists in
many disciplines. Unfortunately, because of the background of many of the
contemporary researchers in such advanced fields as differential topology,
algebraic topology, and differential geometry, the available introductions to
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this subject presuppose a familiarity on the part of the student with several
of these fields. It is our feeling that the elements of dynamical systems theory
can be introduced without prerequisites such as the theory of differentiable
manifolds, advanced analysis, etc. Dynamical systems on simple spaces like
the real line or the plane exhibit all of the chaotic and interesting behavior
that occur on more general manifolds. Without these unnecessary prereq-
uisites, the basic ideas of the field should be accessible to junior and senior
mathematics majors as well as to graduate students and scientists in other
disciplines. This is the basic goal of this text.

The field of dynamical systems and especially the study of chaotic sys-
tems has been hailed as one of the important breakthroughs in science in
this century. While the field is still relatively young, there is no question
that the field is becoming more and more important in a variety of scientific
disciplines. We hope that this text serves to excite and to lure many others
into this dynamic field.

A NOTE TO THE READER:

This is first of all a Mathematics text. Throughout, we emphasize the
mathematical aspects of the theory of discrete dynamical systems, not the
many and diverse applications of this theory. The text begins at a rela-
tively unsophisticated level and, by the end, has progressed so as to require
not much more than the typical mathematics education of an engineer or a
physicist. Fully three quarters of the text is accessible to students with only
a solid advanced calculus and linear algebra background. Of course, a good
dose of mathematical sophistication is useful throughout.

The first chapter, one-dimensional dynamics, is by far the longest. It is
the author’s belief that virtually all of the important ideas and techniques
of nonlinear dynamics can be introduced in the setting of the real line or
the circle. This has the obvious advantage of minimizing the topological
complications of the system and the algebraic machinery necessary to handle
them. In particular, the only real prerequisite for this chapter is a good
calculus course. (O.K., we do multiply a 2×2 matrix once or twice in §1.14 and
we use the Implicit Function Theorem in two variables in §1.12, but these are
exceptions.) With only these tools, we manage to introduce such important
topics as structural stability, topological conjugacy, the shift map, homoclinic
points, and bifurcation theory. To emphasize the point that chaotic dynamics
occurs in the simplest of systems, we carry out most of our analysis in this



x

section on a basic model, the quadratic mapping given by Fµ(x) = µx(1 − x).
This map has the advantage of being perhaps the simplest nonlinear map
yet one which illustrates virtually every concept we wish to introduce. A few
topological ideas, such as the notion of a dense set or a Cantor set, are
introduced in detail when needed.

The second chapter is devoted to higher dimensional dynamical systems.
With many of the prerequisites already introduced in the first chapter, the
discussion of such higher dimensional maps as Smale’s horseshoe, the hyper-
bolic toral automorphisms, and the solenoid become especially simple. This
chapter assumes that the student is familiar with some multi-dimensional
calculus as well as linear algebra, including the notion of eigenvalues and
eigenvectors for 3 × 3 matrices. One of the major differences between one
dimensional and higher dimensional dynamics, the possibility of both con-
traction and expansion at the same time, is treated at length in a section
devoted to the proof of the Stable Manifold Theorem. We end the chapter
with a lengthy set of exercises all centered on the important Hénon map of
the plane. This section serves as a summary of many of the previous topics
in the section as well as a good “final” project for the reader.

The last chapter should be regarded as a “special topics” chapter in that
we presuppose a working knowledge of complex analysis. In this chapter we
describe some of the fascinating and beautiful recent work on the dynamics
of complex analytic maps and, in particular, the structure of the Julia set
of polynomials. This gives a complementary view of the dynamics of maps
such as the quadratic map, which receives so much attention in chapter one.

Each of the chapters is self-contained, assuming familiarity with the ba-
sic concepts of dynamics as outlined in the first chapter. Accordingly, we
have numbered the Theorems, Figures, etc. consecutively within each sub-
section, without reference to the chapter number. As there is very little
cross-referencing between chapters, this should cause no confusion.

There are many themes developed in this book. We have tried to present
several different dynamical concepts in their most elementary formulation in
chapter one and to return to these subjects for further refinement at later
stages in the book. One such topic is bifurcation theory. We introduce
the most elementary bifurcations, the saddle-node and the period-doubling
bifurcations, early in chapter one. Later in the same chapter we treat the
accumulation points of such bifurcations which occur when a homoclinic
point develops. In chapter two, we return to bifurcation theory to discuss
the Hopf bifurcation. Finally, in the last chapter, we explore several types
of bifurcations that occur in analytic dynamics, including a discussion of the
global aspects of the saddle-node bifurcation.
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Another recurrent theme is symbolic dynamics. We think of symbolic
dynamics as a tool whereby complicated dynamical systems are reduced to
seemingly quite different systems which have the advantage that they can
be analyzed quite easily. Symbolic dynamics appears quite early in chap-
ter one when we first discuss the quadratic map. It is clear that the most
elementary setting for the phenomena associated with the Smale horseshoe
mapping occurs in one dimension and we fully exploit this idea. Later, sym-
bolic dynamics is extended to the case of subshifts of finite type via another
quadratic example. And finally the related concepts of Markov partitions
and inverse limits are introduced in the second chapter.

Examples abound in the text. We often motivate new concepts by work-
ing through them in the setting of a specific dynamical system. In fact, we
have often sacrificed generality in order to concentrate on a specific system or
class of systems. Many of the results throughout the text are stated in a form
that is nowhere near full generality. We feel that the general theory is best
left to more advanced texts which presuppose more advanced Mathematics.

Much of what many researchers consider dynamical systems has been
deliberately left out of this text. For example, we do not treat continuous
systems or differential equations at all. There are several reasons for this.
First, as is well known, computations with specific nonlinear ordinary differ-
ential equations are next to impossible. Secondly, the study of differential
equations necessitates a much higher level of sophistication on the part of
the student, certainly more than that necessary for chapter one of this text.
We adopt instead the attitude that any dynamical phenomena that occurs
in a continuous system also occurs in a discrete system, and so we might as
well make life easy and study maps first. There are many texts currently
available that treat continuous systems almost exclusively. We hope that
this book presents an solid introduction to the topics treated in these more
advanced texts.

Another topic that has been excluded is ergodic theory. It is our feeling
that measure theory would take us too far afield in an elementary text.
Of course, it can be argued that measure theory is no more advanced than
the complex analysis necessary for chapter three. However, we feel that
the topological approach adopted throughout this text is inherently easier
to understand, at least for an undergraduate in Mathematics. There is no
question, however, that ergodic theory would provide an ideal sequel to the
material presented here, as would a course in nonlinear differential equations.

This text has benefited from the suggestions and comments of many peo-
ple. I would like to thank Clark Robinson, Guido Sandri, Harvey Keynes,
Phil Boyland, Paul Blanchard, Dick Hall, and Elwood Devaney for helpful
comments on portions of the manuscript. Richard Millman, Chris Golé, and
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Steve Batterson read the entire text and made many useful suggestions re-
garding content and organization (and incorrect proofs). Finally, this text
never would have been completed without the constant advice and encourage-
ment of Phil Holmes. The book owes much to his experience and expertise.

The book was produced using TEX at Boston University by Tom Orowan.
Tom’s near-perfect typing and formatting of the text made the production
of the book effortless and fun. Thanks are also due Chris Mayberry for his
help designing the figures. And finally, it is a pleasure to thank Rick Mixter
and his staff at Benjamin-Cummings for their enthusiastic support for the
duration of this project.

Robert L. Devaney
Boston, Mass.

April, 1985
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PREFACE TO THE SECOND EDITION:

The response to the first edition of this book has been most heartening.
Accordingly, this edition maintains all of the features of the first edition.
We have added new material on the orbit diagram and a new section on
the Mandelbrot set. Apart from this, the only other major changes from the
first edition include a revised treatment of elementary bifurcation theory and
Sarkovskii’s Theorem.

This edition has benefited immensely from the suggestions of many math-
ematicians, including Susan Dabros, Odo Diekmann, David Doster, David
Drasin, Bruce Elenbogen, Jenny Harrison, Henk Heijmans, Roger Kraft, Pe-
ter Landweber, Tyre Newton, John Milnor, Connie Overzet, Charles Pugh,
Phil Rippon, Clark Robinson, Henk Roozen, Joe Silverman, and Mary Lou
Zeeman. Scott Sutherland graciously assisted with many of the new figures.
Elwood Devaney again digested the entire manuscript and returned many
stylistic suggestions. And thanks are especially due to Gary Meisters and
his class at the University of Nebraska for their enthusiastic response to this
book, but I’m afraid that I’m not the coach they think I am!

Robert L. Devaney
Boston, Mass.
October, 1988
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§1.1 EXAMPLES OF DYNAMICAL SYSTEMS 1

Chapter One

One-Dimensional Dynamics

The goal of this first chapter is to introduce many of the basic techniques
from the theory of dynamical systems in a setting that is as simple as possible.
Accordingly, all of the dynamical systems that we will encounter take place
in one dimension, either on the real line or on the unit circle in the plane. For
that reason, much of this chapter can be read with only a solid background
in calculus.

We regard the first twelve sections of this chapter as central to the the-
ory of dynamical systems. Here we introduce such topics as hyperbolicity,
symbolic dynamics, topological conjugacy, structural stability, and chaos.
These form the essential background for all that follows. Indeed, the last
two chapters of this text may be regarded as extensions and refinements of
the material presented in these introductory sections.

Our main thrust in this chapter is to understand what it means for a
dynamical system to be chaotic. We feel that this is best understood in light
of examples. Hence most of our initial effort revolves around a single family
of examples, the family of quadratic maps Fµ(x) = µx(1 − x). Later, using
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such tools as Sarkovskii’s Theorem and the Schwarzian derivative, we will
show that the seemingly specialized results for the quadratic map actually
hold for a large collection of dynamical systems.

The next four sections in this chapter present material which is somewhat
more technical than the preceding material. The concepts introduced – sub-
shifts of finite type, Morse-Smale maps, the rotation number, and homoclinic
bifurcation – are important in the sequel, however. The final three sections
on the kneading theory and the period-doubling route to chaos should be
regarded as special topics. They will not be used in what follows. However,
for the reader interested in recent work on the transition to chaotic dynam-
ics, these sections should provide an introduction to many of the topics in
the current literature.

§1.1 EXAMPLES OF DYNAMICAL SYSTEMS

This brief section is intended merely as motivation for the succeeding
sections. Our aim is to give a couple of simple examples of dynamical sys-
tems. These examples show how dynamical systems occur in the “real world”
and how some very simple phenomena from nature yield rather complicated
dynamical systems.

First, what is a dynamical system? The answer is quite simple: take a
scientific calculator and input any number whatsoever. Then start striking
one of the function keys over and over again. This iterative procedure is an
example of a discrete dynamical system. For example, if we repeatedly strike
the “exp” key, given an initial input x, we are computing the sequence of
numbers

x, ex eex

, eeex

, . . . .

That is, we are iterating the exponential function. If this experiment is
performed over and over again, it becomes apparent that any choice of initial
x leads rather quickly to an “overflow” message from the calculator: that is,
successive iterations of exp(x) tend to ∞. This is, in fact, the main question
we will ask in the sequel: given a function f and an initial value x0, what
ultimately happens to the sequence of iterates

x0, f(x0), f(f(x0)), f(f(f(x0))), . . . .

As another example, consider sinx. A few keystrokes on the calculator
will be enough to convince the reader that any initial x0 leads to a sequence of
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iterates which tends to 0. Similarly, for cos x, any x0 yields a sequence which
converges fairly rapidly to .73908 . . . (in radians, or to .99984 . . . in degrees).
The reader may begin to suspect that iteration of a given function on a given
initial value always yields a sequence that converges to a fixed limit (maybe
x0, maybe 0, in any case a unique limit). Actually, nothing could be further
from the truth. Very simple functions, even the simplest quadratic functions
on the real line, lead to bizarre and unpredictable results when iterated. For
example, program a computer or calculator to iterate the simple function
f(x) = 4x(1 − x). Input a random number between 0 and 1 and watch the
results of the iteration. One gets dramatically different behaviors depending
upon which initial x is input. Sometimes the values repeat; other times they
do not. Most often they wander aimlessly about the unit interval with no
discernible pattern. Now change the parameter from 4 to 3.839, i.e., iterate
the function f(x) = 3.839x(1−x). For a random entry between 0 and 1, one
observes that the iterates of this point eventually settle down to a repeating
cycle of three numbers, .149888 . . . , .489172 . . . , and .959299 . . . , repeated
over and over again in succession. Two comments are in order. The first
example illustrates the phenomenon of chaos or unpredictability that forms
one of the major themes of this book. Despite its complexity, we will see how
to analyze this unpredictability completely. Second, chaos occurs in many,
many dynamical systems. The second example above, which seems compar-
atively rather tame, also admits a set of initial x values which behave just as
unpredictably as in the first example. However, due to roundoff or “experi-
mental” error, we do not see this randomness at first glance. Nevertheless,
as we shall see, it lurks in the background and has an increasingly important
effect on the system as the accuracy of the computations is increased.

At this juncture, we should note that there are many other types of dy-
namical systems besides iterated functions. For example, differential equa-
tions are examples of continuous, as opposed to discrete, dynamical systems.
In this book, we will not deal with these types of systems at all. These types
of systems are much easier to understand once the basic behavior of discrete
systems has been mastered.

Let us now consider several “applied” examples. Dynamical systems
occur in all branches of science, from the differential equations of classical
mechanics in physics to the difference equations of mathematical economics
and biology. We will first describe a simple model from population biology
which will serve as motivation for all of the succeeding chapter.

Population biologists are interested in the long-term behavior of the pop-
ulation of a certain species or collection of species. Given certain observed
or experimentally determined parameters (number of predators, severity of
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climate, availability of food, etc.), the biologist sets up a mathematical model
to describe the fluctuations in the population. This may take the form of a
differential equation or a difference equation, depending upon whether the
population is assumed to change continuously or discretely, such as when the
population is measured once a year or once a generation. In either case, the
population biologist is interested in what happens to an initial population of
P0 members. Does the population tend to zero as time goes on, leading to
extinction of the species? Does the population become arbitrarily large, indi-
cating eventual overcrowding? Or does the population fluctuate periodically
or even randomly? Thus the problem facing the population biologist is a
typical dynamical systems question: given P0, can one predict the long-term
behavior of the population?

Several simple biological models are encountered in elementary calculus
courses. For example, the differential equation of exponential growth or
decay is often the first differential equation a student is exposed to. In
this model, we assume that the population of a single species changes at
a rate that is directly proportional to the population present at the given
time. This is, of course, an extremely naive model, which does not take into
account obvious factors such as overcrowding, the death rate, etc. However,
this model does produce an especially simple differential equation which is
readily solved. If P (t) denotes the population at time t, the assumptions
above may be translated into

dP

dt
= kP.

The solution to this equation is P (t) = P0e
kt where P0 = P (0) is the initial

population of the species. Hence, if the constant of proportionality is positive,
P (t) → ∞ as t → ∞ leading to population explosion. If k < 0, then P (t) → 0
as t → ∞, leading to extinction.

This procedure illustrates (in an exceedingly simple situation) the typical
application of dynamical systems in science. A population biologist sets up
a mathematical model for which the mathematician is asked to provide some
idea about the long-term behavior of the solutions.

This simple model can also be studied as a difference equation. Let us
write Pn = population after n generations, where n is a natural number.
The simplest growth law one can imagine is that the population in the next
generation is directly proportional to that in the present generation. That is

Pn+1 = k Pn

where again k is a constant.
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We have

P1 = kP0

P2 = kP1 = k2P0

P3 = kP2 = k3P0

...

Pn = kPn−1 = knP0

so that the ultimate fate of the population is again easy to decide. If k >
1, Pn → ∞, whereas if 0 < k < 1, then Pn → 0.

For later use, let us recast this difference equation as a function. Let x =
P0 and set f(x) = kx. Note that, in the above terms, f(x) = P1, f(f(x)) =
k2x = P2, f(f(f(x))) = P3, etc. Hence the ultimate behavior of the popula-
tion is intimately related to the asymptotic behavior of the iteration of the
function f .

In either of the above models, one has a rather idealized situation. There
are essentially only two possibilities: unchecked growth or extinction. Ex-
perience tells the population biologist that more complicated patterns arise
in nature. So the biologist tries to incorporate additional constraints or pa-
rameters in the model, hoping for a better reflection of reality. One such
approach again often encountered in calculus is to assume that there is some
limiting value L for the population. If P (t) exceeds L, the population should
tend to decrease (there is overcrowding, not enough food, etc.) On the other
hand, if P (t) < L, there is room for more of the species so P (t) should
increase. The simplest biological model leading to this behavior is

dP

dt
= kP (L − P )

Note that we have simply tacked on the factor L − P to the previous model.
Let us assume that k > 0, the case that previously led to unlimited

growth. Here we note that

1. if P = L ,
dP

dt
= 0

2. if P > L ,
dP

dt
< 0

3. if P < L ,
dP

dt
> 0
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Thus elementary calculus shows that this model behaves according to our
expectations. The population remains constant, decreases, or increases de-
pending upon whether P = L,P > L, or P < L. In fact, one can explicitly
solve the above differential equation via separation of variables and integra-
tion by partial fractions. One finds that

P (t) =
LP0e

Lkt

L − P0 + P0eLkt
.

Using this formula, one may easily sketch the solutions of this system.
While this model conforms more to reality than the exponential growth

model, nevertheless we see no cyclic behavior or other fluctuations in the pop-
ulation. One might naively expect that the corresponding difference equation
behaves similarly. However, we are in for a great surprise: the analogous dif-
ference equation leads to one of the most complicated dynamical systems
imaginable. To this day, the dynamics of this system are not completely un-
derstood. Moreover, this system exhibits many of the pathologies of higher
dimensional systems and for this reason may be considered as one of the
most basic nonlinear dynamical systems. We will return to it throughout
the chapter as it provides a rich source of illustrative examples.

Let us make a simplification in our model. Let us assume that L = 1
is the limiting value. Obviously, we are not now talking about populations
but rather percentage of population. Pn represents the percentage of the
limiting population present in generation n. The population is then assumed
to satisfy the following difference equation

Pn+1 = kPn(1 − Pn),

where again k is a positive constant. As before, we may write x = P0 and
f(x) = kx(1−x). This, of course, is the quadratic function mentioned above.
We have

P1 = f(x)
P2 = f(f(x))
P3 = f(f(f(x))),

and so on. Thus to determine the fate of a population for a given constant
k, we must determine the asymptotic behavior of the function kx(1 − x).
This function, known as the logistic function, and its dynamics have been
the subject of much contemporary mathematical research. In the following
chapters, we will only begin to describe the complications and pathologies
that arise in this simple system.
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Another example of a dynamical system which arises in practical appli-
cations is Newton’s method for finding the roots of a polynomial. Let

Q(x) = anxn + an−1x
n−1 + . . . + a0

be a polynomial. In general, it is impossible to factor Q if the degree of Q
is high. Nevertheless, it is often important in applications to find a root of
Q. One such procedure for doing this is the classical recursion scheme of
Newton. Let x0 be a real number. Consider the recursion

x1 = x0 − Q(x0)
Q′(x0)

x2 = x1 − Q(x1)
Q′(x1)

...

xn = xn−1 − Q(xn−1)
Q′(xn−1)

.

For most choices of the initial value x0, it is well known from calculus that
the sequence of values x0, x1, x2, . . . converges to one of the roots of Q.

Given the polynomial Q, we thus see that Newton’s method determines
a dynamical system. Let

N(x) = x − Q(x)
Q′(x)

.

As long as Q′(x) �= 0, this function is well defined. As in our population
model, Newton’s method reduces to the iteration of N . Again we ask the
same question: given x, what happens as we compute successively higher
iterates of N at x ?

We remark that Newton’s method does not always converge. For certain
initial values x0, the iterative scheme does not yield convergence to a root of
Q. The structure of the set where N fails to converge is extremely interesting
(especially in the complex plane) and leads to unpredictable behavior similar
to the logistic function. We will take up this topic in chapter three.
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§1.2 PRELIMINARIES FROM CALCULUS

In this section, we recall some elementary (and not-so-elementary) no-
tions from single variable and multivariable calculus. In the sequel, we will
also need a few notions from point-set topology, so we include them here as
well. First, we fix some notation. R denotes the real numbers. I or J will
always denote closed intervals in R, i.e., all points x satisfying a ≤ x ≤ b for
some a and b. R2 denotes the Cartesian plane.

Let f :R → R be a function. We denote the derivative of f at x by f ′(x),
the second derivative by f ′′(x), and higher derivatives by f (r)(x). We say
that f is of class Cr on I if f (r)(x) exists and is continuous at all x ∈ I. A
function is said to be smooth if it is of class C1. The function f(x) is C∞

if all derivatives exist and are continuous. Throughout this book, function
means C∞ function; occasionally we will use functions which are continuous
but non-differentiable as examples, but in general, when we say function, we
mean C∞ function.

There are other classes of functions which are commonly studied in cal-
culus. For example, analytic functions (i.e., those with convergent power
series representations) are often encountered. For our purposes in this chap-
ter, these types of functions are too rigid in the following sense. We wish to
allow small changes in or perturbations of the functions which will change
the function in a certain interval but not everywhere. This is accomplished
by the use of bump functions which we will introduce in the Exercises. These
small changes are impossible if we are restricted to analytic functions, for
a small change in any of the coefficients of the power series affects the be-
havior of the function everywhere. Later, in chapter three, when we discuss
complex analytic dynamical systems, we will restrict our attention solely to
these types of functions.

There are some special classes of functions that often arise. The function
f(x) is linear if f(x) = ax for some constant a; f(x) is affine if f(x) =
ax + b; f(x) is piecewise linear if f(x) is affine on a collection of intervals.
For example, f(x) = |x| is piecewise linear, the “pieces” being the positive
and negative reals on each of which f(x) is linear.

Definition 2.1. f(x) is one-to-one if f(x) �= f(y) whenever x �= y.
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Clearly, increasing or decreasing functions are the only types of contin-
uous one-to-one functions of a real variable. If f : I → J is one-to-one, then
we may define the inverse of f , written f−1(x), by the rule f−1(x) = y
if and only if f(y) = x. For example, if f(x) = x3, then f−1(x) = 3

√
x

and if g(x) = tanx, then g−1(x) = arctanx. Here g: (−π/2 , π/2) → R so
g−1:R → (−π/2 , π/2).

Definition 2.2. Let I and J be intervals and f : I → J . The function f is
onto if for any y in J there is an x ∈ I such that f(x) = y. See Fig. 2.1.

Definition 2.3. Let f : I → J . The function f(x) is a homeomorphism if
f(x) is one-to-one, onto, and continuous, and f−1(x) is also continuous.

Fig. 2.1. In a. f(x) is one-to-one on the interval [0, 1];
in b. f(x) is onto the interval [0, 1].

For example, tanx is a homeomorphism between (−π/2 , π/2) and R.
Thus we say the open interval (−π/2 , π/2) is homeomorphic to R. Functions
which are one-to-one are also said to be injective, while functions which are
onto are also called surjective.

Definition 2.4. Let f : I → J . The function f(x) is a Cr-diffeomorphism if
f(x) is a Cr-homeomorphism such that f−1(x) is also Cr.

For example, it is easy to see that tanx is a C∞ diffeomorphism from
(−π/2 , π/2) to R, whereas f(x) = x3 is a homeomorphism which is not a
diffeomorphism since f−1(x) = x1/3 and (f−1)′(0) does not exist.
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We will see in subsequent chapters that diffeomorphisms on the real
line are extremely simple, dynamically speaking. Therefore, in this chapter,
we will primarily consider non-invertible functions. In higher dimensions,
diffeomorphisms become much more interesting and therefore become the
focal point for dynamical systems theory.

We denote the composition of two functions by f ◦ g(x) = f(g(x)). The
n-fold composition of f with itself recurs over and over again in the sequel.
We denote this function by fn(x) = f ◦ . . . ◦ f︸ ︷︷ ︸

n times

(x). Note that fn does not

mean f(x) raised to the nth power, a function which we will never use, nor
does it mean the nth derivative of f(x), which we denote by f (n)(x). If f−1(x)
exists, we write f−n(x) = f−1 ◦ . . . ◦ f−1(x).

Perhaps the most important feature from elementary calculus that we
will use is the Chain Rule:

Proposition 2.5. If f and g are functions, then

(f ◦ g)′(x) = f ′(g(x))g′(x).

In particular, if h(x) = fn(x), then

h′(x) = f ′(fn−1(x)) · f ′(fn−2(x)) · . . . · f ′(x).

Another important notion from elementary calculus is the Mean Value
Theorem:

Theorem 2.6. Suppose f : [a, b] → R is C1. Then there exists c ∈ [a, b] such
that

f(b) − f(a) = f ′(c)(b − a).

Fig. 2.2 illustrates the content of the Mean Value Theorem. The third
important result from calculus is the Intermediate Value Theorem:

Theorem 2.7. Suppose f : [a, b] → R is continuous. Suppose that f(a) = u
and f(b) = v. Then for any z between u and v, there exists c, a ≤ c ≤ b,
such that f(c) = z.

One of the most abstract and seemingly useless theorems from multi-
variable calculus is the Implicit Function Theorem. Most beginning students
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Fig. 2.2. The Mean Value Theorem.

Fig. 2.3. The Intermediate Value Theorem.

have no appreciation of the power of this Theorem when they encounter it in
their first analysis course. We hope that the geometric results in bifurcation
theory that we will encounter later will help dispel any misconceptions about
the usefulness of this theorem.

Theorem 2.8. Suppose G:R2 → R1 is a C1-function (i.e., both partial
derivatives of G exist and are continuous.) Suppose further that

1. G(x0, y0) = 0

2.
∂G

∂y
(x0, y0) �= 0.
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Then there exist open intervals I about x0 and J about y0 and a C1-function
p: I → J satisfying

1. p(x0) = y0
2. G(x, p(x)) = 0 for all x ∈ I.

Fig. 2.4. The Implicit Function Theorem.

Rather than prove the Implicit Function Theorem, we give several exam-
ples of how to apply it. While these examples are obviously concocted, they
nevertheless are typical, as we shall see later.

Example 2.9. Let G(x, y) = x2 + y2 − 1. The level sets of G are clearly
circles, and G = 0 defines the unit circle in the plane.

Suppose G(x0, y0) = 0 and y0 > 0, i.e., (x0, y0) is a point on the upper
semicircle. Clearly,

∂G

∂y
(x0, y0) = 2y0 �= 0

so the Implicit Function Theorem applies. The result is a function p(x) which
satisfies G(x, p(x)) = 0 for all x sufficiently close to x0. What is p(x)? In
this case, we can construct p(x) explicitly. Clearly, p(x) =

√
1 − x2, which

is C∞ as long as x �= ±1 (when y = 0). We have G(x,
√

1 − x2) = 0 for
|x| < 1, as the Implicit Function Theorem guarantees. If y0 < 0, then we
must choose p(x) = −

√
1 − x2.

It is important to realize that, in practice, one cannot very often solve
for the function p(x) as we did here. Nevertheless, the Implicit Function
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Theorem guarantees its existence (whether or not we can explicitly write it
down), and that is often exactly what we need.

Example 2.10. G(x, y) = x5y4 − xy5 − yx2 + 1 satisfies G(1, 1) = 0 and

∂G

∂y
(1, 1) = −2.

Hence there is a function p(x) defined in some interval about x = 1 and
which satisfies G(x, p(x)) = 0. Solving G(x, y) = 0 for y = p(x) is impossible,
however.

Fixed points for functions are points x which satisfy f(x) = x. These
points will play a dominant role in the theory of dynamical systems. The
following easy application of the Intermediate Value Theorem gives an im-
portant criterion for the existence of a fixed point. See Fig. 2.5.

Proposition 2.11. Let I = [a, b] be an interval and let f : I → I be contin-
uous. Then f has at least one fixed point in I.

Proof. Let g(x) = f(x) − x. Clearly, g(x) is continuous on I. Suppose
f(a) > a and f(b) < b (otherwise, one of a or b is fixed). We thus have
g(a) > 0 and g(b) < 0, so the Intermediate Value Theorem gives the existence
of c between a and b for which g(c) = 0. Therefore, f(c) = c and we are done.

q.e.d.

Fig. 2.5. f : I → I has at least one fixed point.
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This theorem is a special case of a much more general theorem called
the Brouwer Fixed Point Theorem, which gives a similar sufficient condition
for the existence of fixed points in higher dimensions. One can actually do
better with a little differentiability. The following result is a special case of
the Contraction Mapping Theorem.

Proposition 2.12. Let f : I → I and assume that |f ′(x)| < 1 for all x in I.
Then there exists a unique fixed point for f in I. Moreover

|f(x) − f(y)| < |x − y|

for all x, y ∈ I, x �= y.

Proof. Proposition 2.11 guarantees at least one fixed point for f , so we
suppose that both x and y are fixed points, x �= y. By the Mean Value
Theorem, there is a c between x and y such that

f ′(c) =
f(y) − f(x)

y − x
= 1.

But this contradicts our assumption that |f ′(c)| < 1 for all c in I. Hence
x = y.

To establish the second assertion of the Proposition, we again use the
Mean Value Theorem to assert that for any x, y ∈ I, x �= y

|f(y) − f(x)| = |f ′(c)||y − x| < |y − x|

as required.
q.e.d.

We close this section with a few notions from general topology. In general,
these notions are beyond the scope of elementary calculus courses. However,
many of them occur in the simplest possible setting on the real line, and this
is precisely the setting in which we will work.

Definition 2.13. Let S ⊂ R. A point x ∈ R is a limit point of S if there is
a sequence of distinct points xn ∈ S converging to x. S is a closed set if it
contains all of its limit points.

Clearly, closed intervals of the form a ≤ x ≤ b are closed sets. Any finite
union of closed sets is also closed. Infinite unions of closed sets, however,
need not be closed, as the following example shows.
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Example 2.14. Let In = [ 1
n , 1]. Then

∞⋃
n=1

In = (0, 1]

which is not closed, since 0 is a limit point of S which is not in S.

Intersections of closed sets yield closed sets, however (the empty set is, by
definition, a closed set.) Moreover, if In is a closed, non-empty, and bounded
interval for each n and In+1 ⊂ In, then ∩∞

n=1 In is a closed, non-empty set.
The crucial word here is, of course, non-empty.

Definition 2.15. Let S ⊂ R. S is an open set if, for any x ∈ S, there is
an ε > 0 such that all points t in the open interval x − ε < t < x + ε are
contained in S.

It is clear that the complement of a closed set is open and vice versa.
Unlike closed sets, infinite unions of open intervals are open sets in R. How-
ever, infinite intersections of open intervals are not open sets. For example,
if Jn = (− 1

n , 1
n), then ∩∞

n=1 Jn = {0} which is closed.
For any set S, we denote the closure of S by S. S consists of all points in

S together with all limit points of S. For example, if S is the open interval
(0, 1), then S is the closed interval [0, 1]. Clearly, if S is closed, then S = S.

Definition 2.16. A subset U of S is dense in S if U = S.

For example, any open set S is dense in its closure S. A more interesting
example is the set of rational numbers Q, which is dense in R. Similarly,
the irrationals are dense in R. We caution the reader against thinking that
dense subsets are necessarily large. Even open and dense sets may be quite
small in the sense of total length. Here is an example in the unit interval I
given by 0 ≤ x ≤ 1. Since the rationals form a countable set in I, we may
list them in some order. One such ordering is

0 , 1,
1
2
,

1
3
,

2
3
,

1
4
,

3
4
,

1
5
,

2
5
,

3
5
,

4
5
,

1
6
, . . . .

Now let ε > 0 be small. Consider the open interval of length εn about the
nth rational in this list. The union of all of these intervals is an open set in
I which is clearly dense since it contains all of the rationals in I. However,
the total length of this set is quite small. Indeed, the length is given by

∞∑
n=1

εn =
ε

1 − ε
.
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This example shows clearly the difference between the topological ap-
proach to dynamics that we will adopt in the sequel and the measure theo-
retic approach. In a topological sense, an open, dense subset is considered
“large.” These sets may or may not be large in a measure theoretic sense,
i.e., in the sense of total length.

Exercises

1. Decide whether each of the following functions are one-to-one, onto,
homeomorphisms, or diffeomorphisms on their domains of definition.

a. f(x) = x5/3

b. f(x) = x4/3

c. f(x) = 3x + 5
d. f(x) = ex

e. f(x) = 1/x

f. f(x) = 1/x2

2. Identify which of the following subsets of R are closed, open, or neither.
a. {x|x is an integer }
b. {x|x is a rational number }
c. {x|x = 1

n for some natural number n}
d. {x| sin( 1

x) = 0}
e. {x|x sin( 1

x) = 0}
f. {x| sin( 1

x) > 0}

3. Prove that the set of rational numbers of the form p/2n for p, n ∈ Z is
dense in R.

The goal of the next few exercises is to construct special functions which will
be useful later when we perturb or change slightly a given function. These
functions are called “bump functions.” Define

B(x) =
{

exp(−1/x2) if x > 0
0 if x ≤ 0

4. Sketch the graph of B(x).

5. Prove that B′(0) = 0.
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6. Inductively prove that B(n)(0) = 0 for all n. Conclude that B(x) is a
C∞ function.

7. Modify B(x) to construct a C∞ function C(x) which satisfies
a. C(x) = 0 if x ≤ 0.
b. C(x) = 1 if x ≥ 1.
c. C ′(x) > 0 if 0 < x < 1.

8. Modify C(x) to construct a C∞ bump function D(x) on the interval
[a, b], i.e., D(x) satisfies

a. D(x) = 1 for a ≤ x ≤ b.
b. D(x) = 0 for x < α and x > β where α < a and β > b.
c. D′(x) �= 0 on the intervals (α, a) and (b, β).

9. Use a bump function to construct a diffeomorphism f : [a, b] → [c, d]
which satisfies f ′(a) = f ′(b) = 1 and f(a) = c, f(b) = d.

§1.3 ELEMENTARY DEFINITIONS

The basic goal of the theory of dynamical systems is to understand the
eventual or asymptotic behavior of an iterative process. If this process is a
differential equation whose independent variable is time, then the theory at-
tempts to predict the ultimate behavior of solutions of the equation in either
the distant future (t → ∞) or the distant past (t → −∞). If the process is
a discrete process such as the iteration of a function, then the theory hopes
to understand the eventual behavior of the points x, f(x), f2(x), . . . , fn(x)
as n becomes large. That is, dynamical systems asks the somewhat non-
mathematical sounding question: where do points go and what do they do
when they get there? In this chapter, we will attempt to answer this question
at least partially for one of the simplest classes of dynamical systems, func-
tions of a single real variable. Functions which determine dynamical systems
are also called mappings, or maps, for short. This terminology connotes the
geometric process of taking one point to another. As much of the sequel will
in fact be geometric, we will use all of these terms synonymously.

Definition 3.1. The forward orbit of x is the set of points x, f(x), f2(x), . . .
and is denoted by O+(x). If f is a homeomorphism, we may define the full
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orbit of x, O(x), as the set of points fn(x) for n ∈ Z, and the backward orbit
of x, O−(x), as the set of points x, f−1(x), f−2(x), . . . .

Thus our basic goal is to understand all orbits of a map. Orbits and
forward orbits of points can be quite complicated sets, even for very simple
nonlinear mappings. However, there are some orbits which are especially
simple and which will play a central role in the study of the entire system.

Definition 3.2. The point x is a fixed point for f if f(x) = x. The point x
is a periodic point of period n if fn(x) = x. The least positive n for which
fn(x) = x is called the prime period of x. We denote the set of periodic
points of (not necessarily prime) period n by Pern(f), and the set of fixed
points by Fix (f). The set of all iterates of a periodic point form a periodic
orbit.

Maps may have many fixed points. For example, the identity map
id(x) = x fixes all points in R, whereas the map f(x) = −x fixes the origin,
while all other points have period 2. These, however, are atypical dynamical
systems; maps with intervals of fixed or periodic points are rare in a sense
which will be made precise later. Most of the dynamical systems we will
encounter will have isolated periodic points.

Example 3.3. The map f(x) = x3 has 0, 1, and −1 as fixed points and no
other periodic points. The map P (x) = x2−1 has fixed points at (1±

√
5)/2,

while the points 0 and −1 lie on a periodic orbit of period 2.

Example 3.4. Let S1 denote the unit circle in the plane. We denote a point
in S1 by its angle θ measured in radians in the standard manner. Hence a
point is determined by any angle of the form θ + 2kπ for an integer k. Now
let f(θ) = 2θ. (Note that f(θ + 2π) = f(θ) on the circle so this map is well
defined.) Now fn(θ) = 2nθ, so that θ is periodic of period n if and only if
2nθ = θ + 2kπ for some integer k, i.e., if and only if θ = 2kπ/(2n − 1) where
0 ≤ k ≤ 2n is an integer. Hence the periodic points of period n for f are the
(2n − 1)th roots of unity. It follows that the set of periodic points are dense
in S1. See Exercise 10.

Definition 3.5. A point x is eventually periodic of period n if x is not
periodic but there exists m > 0 such that fn+i(x) = f i(x) for all i ≥ m.
That is, f i(x) is periodic for i ≥ m.

Example 3.6. Let f(x) = x2. Then f(1) = 1 is fixed, while f(−1) = 1 is
eventually fixed.



§1.3 ELEMENTARY DEFINITIONS 19

Example 3.7. Let f(θ) = 2θ on the circle. Note that f(0) = 0 is fixed. If
θ = 2kπ/2n then fn(θ) = 2kπ so that θ is eventually fixed. It follows that
eventually fixed points are also dense in S1. See Exercise 11.

We remark that eventually periodic points cannot occur if the map is a
homeomorphism.

Definition 3.8. Let p be periodic of period n. A point x is forward asymp-
totic to p if limi→∞ f in(x) = p. The stable set of p, denoted by W s(p),
consists of all points forward asymptotic to p.

If p is non-periodic, we may still define forward asymptotic points by
requiring |f i(x) − f i(p)| → 0 as i → ∞. Also, if f is invertible, we may con-
sider backward asymptotic points by letting i → −∞ in the above definition.
The set of points backwards asymptotic to p is called the unstable set of p
and is denoted by W u(p).

Example 3.9. Let f(x) = x3. Then W s(0) is the open interval −1 < x < 1.
W u(1) is the positive real axis, whereas W u(−1) is the negative real axis.

Definition 3.10. A point x is a critical point of f if f ′(x) = 0. The critical
point is non-degenerate if f ′′(x) �= 0. The critical point is degenerate if
f ′′(x) = 0.

For example f(x) = x2 has a non-degenerate critical point at 0, but
f(x) = xn for n > 2 has a degenerate critical point at 0. Note that degenerate
critical points may be maxima, minima, or saddle points (as in the case of
f(x) = x3). But non-degenerate critical points must be either maxima or
minima. Critical points cannot occur for diffeomorphisms, but their existence
for non-invertible maps is one reason why these kinds of maps are more
complicated.

The goal of dynamical systems is to understand the nature of all or-
bits, and to identify the set of orbits which are periodic, eventually periodic,
asymptotic, etc. Generally, this is an impossible task. For example, if f(x) is
a quadratic polynomial, then finding explicitly the periodic points of period
n necessitates solving the equation fn(x) = x, which is a polynomial equa-
tion of degree 2n. A computer does not help matters much, for numerical
computations of periodic points are often misleading. Round-off errors tend
to accumulate and make many periodic points invisible to the computer.
Therefore we are left with only qualitative or geometric techniques to under-
stand the dynamics of a given system. This means that we should look for
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a geometric picture of the behavior of all orbits of a system. This geometric
picture is provided by the phase portrait which we now discuss.

The graph of a function on the reals provides information about its first
iterate, but gives very little information about subsequent iterates. To un-
derstand higher iterates, we could attempt to sketch each of their graphs, but
this is a cumbersome procedure. There is a much more efficient, geometric
method for describing the orbits of a dynamical system, the phase portrait .
This is a picture, on the real line itself, as opposed to the plane, of all orbits
of a system. For example, to indicate that all non-zero orbits of f(x) = −x
have period 2, we could sketch the phase portrait as in Fig. 3.1.a. This figure
also depicts the phase portraits of some other simple maps.

Fig. 3.1. The phase portraits of
a. f(x) = −x, b. f(x) = 2x,
c. f(x) = 1

2x, d. f(x) = x3.

The graph of f(x) does of course contain information about the first
iteration of f . We may use it to gain insight into higher iterations and
hence the phase portrait via the following procedure which we call graphical
analysis. Identify the diagonal ∆ = {(x, x)|x ∈ R} with R in the obvious
way. A vertical line from (p, p) to the graph of f meets the graph at (p, f(p)).
Then a horizontal line from (p, f(p)) to ∆ meets the diagonal at (f(p), f(p)).
Hence a vertical line to the graph followed by a horizontal line back to ∆
yields the image of the point p under f on the diagonal. We may thus visu-
alize the phase portrait of a map as taking place on the diagonal rather than
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Fig. 3.2. Graphical analyses of
a. g(x) = x3 and b. f(x) = 2x − x2.

on the x-axis. Then an orbit is given by repeatedly drawing line segments
vertically from ∆ to the graph and then horizontally from the graph to ∆.
Fig. 3.2 illustrates this procedure for g(x) = x3 and f(x) = 2x − x2.

Diffeomorphisms of the circle form an interesting class of maps which are
somewhat different from maps of R. The following example is typical.

Example 3.11. Let f(θ) = θ + ε sin(2θ) for 0 < ε < 1/2. Note that f has
fixed points at 0, π/2, π, and 3π/2. We compute f ′(0) = f ′(π) = 1 + 2ε > 1
whereas f ′(π/2) = f ′(3π/2) = 1 − 2ε < 1. Hence 0 and π are repelling fixed
points and π/2 and 3π/2 are attracting. More generally, f(θ) = θ+ε sin(Nθ)
has N attracting and N repelling fixed points arranged alternately around
the circle as long as 0 < ε < 1/N.

The phase portraits of these maps may be sketched as in Fig. 3.3. An-
other important class of circle maps are the translation maps.

Example 3.12. Translations of the circle. Let λ ∈ R and Tλ(θ) = θ + 2πλ.
The maps Tλ behave quite differently depending upon the rationality or
irrationality of λ. If λ = p/q, where p and q are integers, then T q

λ(θ) = θ +
2πp = θ so that all points are fixed by T q

λ . When λ is irrational, the situation
is quite different. The following result is known as Jacobi’s Theorem.
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Fig. 3.3. The phase portraits of
a. f(θ) = θ + ε sin(2θ) and

b. f(θ) = θ + ε sin(4θ).

Theorem 3.13. Each orbit Tλ is dense in S1 if λ is irrational .

Proof. Let θ ∈ S1. The points on the orbit of θ are distinct for if T n
λ (θ) =

Tm
λ (θ) we would have (n − m)λ ∈ Z, so that n = m. Any infinite set of

points on the circle must have a limit point. Thus, given any ε > 0, there
must be integers n and m for which |Tn

λ (θ) − Tm
λ (θ)| < ε. Let k = n − m.

Then |T k
λ (θ) − θ| < ε.

Now Tλ preserves lengths in S1. Consequently, T k
λ maps the arc connect-

ing θ to T k
λ (θ) to the arc connecting T k

λ (θ) and T 2k
λ (θ) which has length less

than ε. In particular it follows that the points θ, T k
λ (θ), T 2k

λ (θ), . . . partition
S1 into arcs of length less than ε. Since ε was arbitrary, this completes the
proof.

q.e.d.

Exercises

1. Use a calculator to iterate each of the following functions (using an
arbitrary initial value) and explain these results.

a. C(x) = cos(x)
b. S(x) = sin(x)
c. E(x) = ex

d. F (x) = 1
ee

x

e. A(x) = arctan(x)
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2. Using the graph of the function, identify the fixed points for each of the
maps in the previous Exercise.
3. List all periodic points for each of the following maps. Then use the
graph of f(x) to sketch the phase portrait of f(x) on the indicated interval.

a. f(x) = −1
2x, −∞ < x < ∞

b. f(x) = −3x, −∞ < x < ∞
c. f(x) = x − x2, 0 ≤ x ≤ 1
d. f(x) = π

2 sinx, 0 ≤ x ≤ π

e. f(x) = −x3, −∞ < x < ∞
f. f(x) = 1

2(x3 + x), −1 ≤ x ≤ 1
4. Identify the stable sets of each of the fixed points for the maps in the
previous Exercise.
5. For each of the following functions, list all critical points and decide
whether each is degenerate or non-degenerate.

a. f(x) = x3 − x

b. S(x) = sin(x)
c. f(x) = x4 − 2x2

d. g(x) = x3 + x4

6. Describe the phase portrait of the map of the circle given by

f(θ) = θ +
2π
n

+ ε sin(nθ)

for 0 < ε < 1/n.
7. Prove that a homeomorphism of R can have no periodic points with
prime period greater than 2. Give an example of a homeomorphism that has
a periodic point of period 2.
8. Prove that a homeomorphism cannot have eventually periodic points.
9. Let S: S1 → S1 be given by S(θ) = θ + ω + ε sin(θ) where ω and ε are
constants. Prove that S is a homeomorphism of the circle if |ε| < 1.
10. Let f(θ) = 2θ be the map of S1 discussed in Example 3.4. Prove that
periodic points of f are dense in S1.
11. Prove that eventually fixed points for the map in Exercise 10 are also
dense in S1.
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§1.4 HYPERBOLICITY

Simple maps like id(x) = x and f(x) = −x are, unfortunately, atypical
among dynamical systems. There are many reasons why this is so, but
perhaps the most unusual feature of these maps is the fact that all points
are periodic under iteration of these maps. Most maps do not have this type
of behavior. Periodic points tend to be more spread out on the line. In this
section we will introduce one of the main themes of this book, hyperbolicity.
Maps with hyperbolic periodic points are the ones that occur typically in
many dynamical systems and, moreover, they provide the simplest types of
periodic behavior to analyze.

Definition 4.1. Let p be a periodic point of prime period n. The point p is
hyperbolic if |(fn)′(p)| �= 1. The number (fn)′(p) is called the multiplier of
the periodic point.

Example 4.2. Consider the diffeomorphism f(x) = 1
2(x3 + x). There are

3 fixed points: x = 0, 1, and −1. Note that f ′(0) = 1/2 and f ′(±1) = 2.
Hence each fixed point is hyperbolic. The graph and phase portrait of f(x)
are depicted in Fig. 4.1.

Example 4.3. Let f(x) = −1
2(x3 + x). 0 is a hyperbolic fixed point,

with f ′(0) = −1
2 . The points ±1 now lie on a periodic orbit of period 2.

We compute (f2)′(±1) = f ′(1) · f ′(−1) = 4 by the chain rule. Hence this
periodic point is hyperbolic, and the phase portrait is depicted in Fig. 4.2.
Note that points in the interval (−1, 1) spiral toward 0 and away from ±1.

We observe that, in the above two examples, we have |f ′(0)| < 1 and
that points close to 0 are forward asymptotic to 0. This situation occurs
often:

Proposition 4.4. Let p be a hyperbolic fixed point with |f ′(p)| < 1. Then
there is an open interval U about p such that if x ∈ U , then

lim
n→∞ fn(x) = p.
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Fig. 4.1. The graph and phase portraits of
f(x) = 1

2(x3 + x).

Proof. Since f is C1, there is ε > 0 such that |f ′(x)| < A < 1 for x ∈
[p − ε, p + ε]. By the Mean Value Theorem

|f(x) − p| = |f(x) − f(p)| ≤ A|x − p| < |x − p| ≤ ε.

Hence f(x) is contained in [p − ε, p + ε] and, in fact, is closer to p than x is.
Via the same argument

|fn(x) − p| ≤ An|x − p|

so that fn(x) → p as n → ∞.
q.e.d.

Remarks.
1. It follows that the interval [p − ε, p + ε] is contained in the stable set
associated to p, W s(p).
2. A similar result is true for hyperbolic periodic points of period n. In
this case, we get an open interval U about p which is mapped inside itself
by fn. Of course, the assumption in this case is that |(fn)′(p)| < 1.

Definition 4.5. Let p be a hyperbolic periodic point of period n with
|(fn)′(p)| < 1. The point p is called an attracting periodic point (an attrac-
tor) or a sink.
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Fig. 4.2. The graph and phase portraits of
f(x) = −1

2(x3 + x).

Attracting periodic points of period n thus have neighborhoods which
are mapped inside themselves by fn. Such a neighborhood is called the local
stable set and is denoted by W s

loc. We may actually distinguish three different
types of attracting fixed points, namely those where f ′(p) = 0, 0 < f ′(p) < 1,
and −1 < f ′(p) < 0. The behavior near these types of fixed points is
illustrated in Fig. 4.3.

The behavior of a map near periodic points where the derivative is larger
than one in absolute value is quite different from that of sinks.

Proposition 4.6. Let p be a hyperbolic fixed point with |f ′(p)| > 1. Then
there is an open interval U of p such that, if x ∈ U, x �= p, then there exists
k > 0 such that fk(x) �∈ U .

The proof is similar to the proof of the preceding proposition and is
therefore left as an exercise. Graphically, the result is quite clear; see Fig. 4.4.

Definition 4.7. A fixed point p with |f ′(p)| > 1 is called a repelling fixed
point (a repellor) or source. The neighborhood described in the Proposition
is called the local unstable set and denoted W u

loc.
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Fig. 4.3. The phase portraits near an attracting fixed point p.
in case a. 0 < f ′(p) < 1, b. f ′(p) = 0, c. −1 < f ′(p) < 0.

Fig. 4.4. The phase portraits near a repelling fixed point.

We remark that periodic points of period n exhibit similar behavior when
|(fn)′(p)| > 1.

Hyperbolic periodic points therefore have local behavior which is gov-
erned by the derivative at the periodic point. This is not true when the
point is indifferent or non-hyperbolic, as the following example shows.

Example 4.8. Each of the maps in Fig. 4.5 satisfy f(0) = 0 and f ′(0) = 1,
but each have vastly different phase portraits near 0. In a., the map f(x) =
x + x3 has a weakly repelling fixed point at 0. In b., the map f(x) = x − x3
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Fig. 4.5. The phase portraits of a. f(x) = x + x3,
b. f(x) = x − x3, c. f(x) = x + x2.

has a weakly attracting fixed point at 0. In c., the map f(x) = x + x2 is
weakly repelling from the right but weakly attracting from the left.

Most maps have only hyperbolic periodic points, as we shall see later.
However, non-hyperbolic periodic points often occur in families of maps.
When this happens, the periodic point structure often undergoes a bifurca-
tion. We will deal with bifurcation theory more extensively later, but for
now we give several examples.

Example 4.9. Consider the family of quadratic functions Qc(x) = x2 + c,
where c is a parameter. The graphs of Qc assume three different positions
relative to the diagonal depending upon whether c > 1/4, c = 1/4, or c <
1/4. See Fig. 4.6. Note that Qc has no fixed points for c > 1/4. When
c = 1/4, Qc has a unique non-hyperbolic fixed point at x = 1/2. And when
c < 1/4, Qc has a pair of fixed points, one attracting and one repelling. Thus
the phase portrait of Qc changes as c decreases through 1/4. This change is
an example of a bifurcation.

Example 4.10. Let Fµ(x) = µx(1 − x) with µ > 1. Fµ has two fixed
points: one at 0 and the other at pµ = (µ − 1)/µ. Note that F ′

µ(0) = µ
and F ′

µ(pµ) = 2 − µ. Hence 0 is a repelling fixed point for µ > 1 and pµ is
attracting for 1 < µ < 3. When µ = 3, F ′

µ(pµ) = −1. We sketch the graphs
of F 2

µ for µ near 3. See Fig. 4.7. Note that 2 new fixed points for F 2
µ appear

as µ increases through 3. These are new periodic points of period 2. Another
bifurcation has occurred: this time we have a change in Per2(Fµ).

This quadratic family actually exhibits many of the phenomena that are
crucial in the general theory. The next section is devoted entirely to this
function.
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Fig. 4.6. The graphs of Qc(x) = x2 + c for c > 1/4,
c = 1/4, and c < 1/4.

Exercises

1. Find all periodic points for each of the following maps and classify them
as attracting, repelling, or neither. Sketch the phase portraits.

a. f(x) = x − x2

b. f(x) = 2(x − x2)
c. f(x) = x3 − 1

9x

d. f(x) = x3 − x
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Fig. 4.7. The graphs of F 2
µ(x) where

Fµ(x) = µx(1 − x) for
µ < 3, µ = 3, and µ > 3.

e. S(x) = 1
2 sin(x)

f. S(x) = sin(x)
g. E(x) = ex−1

h. E(x) = ex

i. A(x) = arctanx

j. A(x) = π
4 arctanx
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k. A(x) = −π
4 arctanx

2. Discuss the bifurcations which occur in the following families of maps
for the indicated parameter value

a. Sλ(x) = λ sinx, λ = 1
b. Eλ(x) = λex, λ = 1/e

c. Eλ(x) = λex, λ = −e

d. Qc(x) = x2 + c, c = −3/4
e. Fµ(x) = µx(1 − x), µ = 1
f. Aλ(x) = λ arctanx, λ = 1
g. Aλ(x) = λ arctan x, λ = −1

3. Suppose f is a diffeomorphism. Prove that all hyperbolic periodic points
are isolated.

4. Show via an example that hyperbolic periodic points need not be iso-
lated.

5. Find an example of a C1 diffeomorphism with a non-hyperbolic fixed
point which is an accumulation point of other hyperbolic fixed points.

6. Discuss the dynamics of the family fα(x) = x3 − αx for −∞ < α ≤ 1.
Find all parameter values where bifurcations occur. Describe how the phase
portrait of fα changes at these points.

7. Consider the linear maps fk(x) = kx. Show that there are four open sets
of parameters for which the phase portraits of fk are similar. The exceptional
cases are k = 0, ±1.

§1.5 AN EXAMPLE: THE QUADRATIC FAMILY

In this section, we will continue the discussion of the quadratic family
Fµ(x) = µx(1 − x). Actually, we will return to this example repeatedly
throughout the remainder of this chapter, since it illustrates many of the
most important phenomena that occur in dynamical systems.
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Proposition 5.1.

1. Fµ(0) = Fµ(1) = 0 and Fµ(pµ) = pµ, where pµ =
µ − 1

µ
.

2. 0 < pµ < 1 if µ > 1.

The proof of this Proposition is straightforward. From now on we will
concentrate on the case µ > 1. The following Proposition shows that most
points behave rather tamely under iteration of Fµ: all points which do not
lie in the interval [0, 1] tend to −∞.

Proposition 5.2. Suppose µ > 1. If x < 0, then Fn
µ (x) → −∞ as n → ∞.

Similarly, if x > 1, then F n
µ (x) → −∞ as n → ∞.

Proof. If x < 0, then µx(1−x) < x so Fµ(x) < x. Hence Fn
µ (x) is a decreasing

sequence of points. This sequence cannot converge to p, for then we would
have Fn+1

µ (x) → Fµ(p) < p, whereas Fn
µ (x) → p. Hence Fn

µ (p) → −∞ as
required. If x > 1, then Fµ(x) < 0 so F n

µ (x) → −∞ as well.
q.e.d.

Graphical analysis yields the above results easily, as shown in Fig. 5.1.
As a consequence of this Proposition, all of the interesting dynamics of the
quadratic family occur in the unit interval I = {x | 0 ≤ x ≤ 1}. For low
values of µ, the dynamics of Fµ are not too complicated.

Proposition 5.3. Let 1 < µ < 3.
1. Fµ has an attracting fixed point at pµ = (µ − 1)/µ and a repelling

fixed point at 0.
2. If 0 < x < 1, then

lim
n→∞ F n

µ (x) = pµ.

Proof. Part 1 was proved in Example 4.10 at the end of the last section. For
part 2, we first deal with the case 1 < µ < 2. Suppose x lies in the interval
(0, 1/2]. Then graphical analysis immediately shows that

|Fµ(x) − pµ| < |x − pµ|

if x �= pµ. See Fig. 5.2. Consequently, Fn
µ (x) → pµ as n → ∞. If, on the

other hand, x lies in the interval (1/2, 1), then Fµ(x) lies in (0, 1/2), so that
the previous argument implies

F n
µ (x) = Fn−1

µ (Fµ(x)) → pµ

as n → ∞.
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Fig. 5.1. Graphical analysis of Fµ(x) = µx(1 − x)
when µ > 1.

The case when 2 < µ < 3 is more difficult. Graphical analysis shows
what is different in this case. See Fig. 5.2. Note that 1/2 < pµ < 1. Let
p̂µ denote the unique point in the interval (0, 1/2) that is mapped onto pµ

by Fµ. Then the reader may easily check that F 2
µ maps the interval [p̂µ, pµ]

inside [1/2, pµ]. It follows that Fn
µ (x) → pµ as n → ∞ for all x ∈ [p̂µ, pµ].

Now suppose x < p̂µ. Again graphical analysis shows that there exists k > 0
such that F k

µ (x) ∈ [p̂µ, pµ]. Thus F k+n
µ (x) → pµ as n → ∞ in this case as

well. Finally, as before, Fµ maps the interval (pµ, 1) onto (0, pµ), so the result
follows here as well. Since (0, 1) = (0, p̂µ) ∪ [p̂µ, pµ] ∪ (pµ, 1), we are finished.
We leave the intermediate case µ = 2 to the reader. See Exercise 1.

q.e.d.
Hence for 1 < µ < 3, Fµ has only two fixed points and all other points in

I are asymptotic to pµ. Thus the dynamics of Fµ are completely understood
for µ in this range. The phase portraits of Fµ are depicted in Fig. 5.3.

As we showed in Example 4.10 in the previous section, as µ passes
through 3, the dynamics of Fµ become slightly more complicated: a new
periodic point of period 2 is born. This is the beginning of a long story: as µ
continues to increase the dynamics of Fµ become increasingly more compli-
cated until the phase portrait of Fµ is dramatically different from the above
picture. This is a scenario that we will investigate in much more detail later.
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Fig. 5.2. Graphical analysis of Fµ(x) = µx(1 − x)
when a. 1 < µ < 2, and b. 2 < µ < 3.

Fig. 5.3. The phase portraits for Fµ(x) = µx(1 − x)
when a. 1 < µ < 2, and b. 2 < µ < 3.

We now turn to the case when µ > 4. For the remainder of this section,
we will drop the subscript µ and write F instead of Fµ. As above, all of
the interesting dynamics of F occur in the unit interval I. Note that, since
µ > 4, the maximum value µ/4 of F is larger than one. Hence certain points
leave I after one iteration of F . Denote the set of such points by A0. Clearly,
A0 is an open interval centered at 1

2 and has the property that, if x ∈ A0,
then F (x) > 1, so F 2(x) < 0 and Fn(x) → −∞. A0 is the set of points
which immediately escape from I. All other points in I remain in I after one
iteration of F .

Let A1 = {x ∈ I | F (x) ∈ A0}. If x ∈ A1, then F 2(x) > 1, F 3(x) < 0,
and so, as before, F n(x) → −∞. Inductively, let An = {x ∈ I|Fn(x) ∈ A0}.
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Fig. 5.4.

That is, An = {x ∈ I|F i(x) ∈ I for i ≤ n but Fn+1(x) �∈ I}, so that An

consists of all points which escape from I at the n + 1st iteration. As above,
if x lies in An, it follows that the orbit of x tends eventually to −∞. Since
we therefore know the ultimate fate of any point which lies in the An, it
therefore remains only to analyze the behavior of those points which never
escape from I, i.e., the set of points which lie in

I −
( ∞⋃

n=0
An

)
.

Let us denote this set by Λ. Our first question is: what precisely is this
set of points? To understand Λ, we describe more carefully its recursive
construction.

Since A0 is an open interval centered at 1/2, I −A0 consists of two closed
intervals, I0 on the left and I1 on the right. See Fig. 5.4.

Note that F maps both I0 and I1 monotonically onto I; F is increasing
on I0 and decreasing on I1. Since F (I0) = F (I1) = I, there are a pair of
open intervals, one in I0 and one in I1, which are mapped into A0 by F .
Therefore this pair of intervals is precisely the set A1.

Now consider I − (A0 ∪ A1). This set consists of 4 closed intervals and
F maps each of them monotonically onto either I0 or I1. Consequently F 2

maps each of them onto I. We therefore see that each of the four intervals in
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Fig. 5.5. The graph of F 2.

I − (A0 ∪ A1) contains an open subinterval which is mapped by F 2 onto A0.
Therefore, points in these intervals escape from I upon the third iteration
of F . This is the set we called A2. For later use, we observe that F 2 is
alternately increasing and decreasing on these four intervals. It follows that
the graph of F 2 must therefore have two humps as shown in Fig. 5.5.

Continuing in this manner we note two facts. First, An consists of 2n

disjoint open intervals. Hence I − (A0 ∪ . . . ∪ An) consists of 2n+1 closed
intervals since

1 + 2 + 22 + . . . + 2n = 2n+1 − 1.

Secondly, F n+1 maps each of these closed intervals monotonically onto I.
In fact, the graph of F n+1 is alternately increasing and decreasing on these
intervals. Thus the graph of F n+1 has exactly 2n humps on I, and it follows
that the graph of Fn crosses the line y = x at least 2n times. This implies
that Fn has at least 2n fixed points or, equivalently, Pern(F ) consists of 2n

points in I. Clearly, the structure of Λ is much more complicated when µ > 4
than the earlier case µ < 3.

The construction of Λ is reminiscent of the construction of the Cantor
Middle Thirds set: Λ is obtained by successively removing open intervals
from the “middles” of a set of closed intervals.
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Definition 5.4. A set Λ is a Cantor set if it is a closed, totally disconnected,
and perfect subset of I. A set is totally disconnected if it contains no in-
tervals; a set is perfect if every point in it is an accumulation point or limit
point of other points in the set.

Example 5.5. The Cantor Middle-Thirds Set. This is the classical example
of a Cantor set. Start with I but remove the open “middle third,” i.e., the
interval (1

3 , 2
3). Next, remove from what remains the two middle thirds again,

i.e., the pair of intervals (1
9 , 2

9) and (7
9 , 8

9). Continue removing middle thirds
in this fashion; note that 2n open intervals are removed at the nth stage of
this process. Thus, this procedure is entirely analogous to our construction
above. Exercise 7 shows that the Cantor Middle-Thirds set is indeed a Cantor
set as defined in 5.4.

Remark. The Cantor Middle-Thirds set is an example of a fractal. Intu-
itively, a fractal is a set which is self-similar under magnification. In the
Cantor Middle-Thirds set, suppose we look only at those points which lie in
the left-hand interval [0, 1

3 ]. Under a microscope which magnifies this interval
by a factor of three, the “piece” of the Cantor set in [0, 1

3 ] looks exactly like
the original set. More precisely, the linear map L(x) = 3x maps the portion
of the Cantor set in [0, 1

3 ] homeomorphically onto the entire set. See Exercise
10. This process does not stop at the first level: one may magnify any piece
of the Cantor set at the nth stage of the construction by a factor of 3n and
obtain the original set. See Exercise 11.

To guarantee that our set Λ is a Cantor set, we need an additional hy-
pothesis on µ. Let us assume that µ is large enough so that |F ′(x)| > 1 for
all x ∈ I0 ∪ I1. The reader may check that µ > 2 +

√
5 suffices. Hence, for

these values of µ, there exists λ > 1 such that |F ′(x)| > λ for all x ∈ Λ.
By the chain rule, it follows that |(Fn)′(x)| > λn as well. We claim that
Λ contains no intervals. Indeed, if this were so, we could choose x, y ∈ Λ,
x �= y, with the closed interval [x, y] ⊂ Λ. But then, |(Fn)′(α)| > λn for all
α ∈ [x, y]. Choose n so that λn|y − x| > 1. By the Mean Value Theorem,
it then follows that |Fn(y) − Fn(x)| ≥ λn|y − x| > 1, which implies that at
least one of F n(y) or F n(x) lies outside of I. This is a contradiction, and so
Λ is totally disconnected.

Since Λ is a nested intersection of closed intervals, Λ is closed. We now
prove that Λ is perfect. First note that any endpoint of an Ak is in Λ: indeed,
such points are eventually mapped to the fixed point at 0, and so they stay
in I under iteration. Now if p ∈ Λ were isolated, every nearby point must
leave I under iteration of F . Such points must belong to some Ak. Either
there is a sequence of endpoints of the Ak converging to p, or else all points
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in a deleted neighborhood of p are mapped out of I by some power of F .
In the former case, we are done as the endpoints of the Ak map to 0 and
hence are in Λ. In the latter, we may assume that Fn maps p to 0 and all
other points in a neighborhood of p into the negative real axis. But then Fn

has a maximum at p so that (Fn)′(p) = 0. By the chain rule, we must have
F ′(F i(p)) = 0 for some i < n. Hence F i(p) = 1/2. But then F i+1(p) �∈ I
and so Fn(p) → −∞, contradicting the fact that Fn(p) = 0.

Hence we have proved

Theorem 5.6. If µ > 2 +
√

5, then Λ is a Cantor set .

Remark. The theorem is true for µ > 4, but the proof is more delicate.

We have now succeeded in understanding the gross behavior of orbits of
Fµ when µ > 4. Either a point tends to −∞ under iteration of Fµ, or else
its entire orbit lies in Λ. Hence we understand the orbit of a point under Fµ

perfectly well as long as the point does not lie in Λ. In the next section, we
will complete the analysis of the dynamics of Fµ by analyzing the dynamics
of Fµ on Λ.

When µ > 2 +
√

5, we have shown that |F ′
µ(x)| > 1 on I0 ∪ I1. This

implies that |F ′
µ(x)| > 1 on Λ. This is a condition similar to the hyperbolicity

condition of §3, except that we require |F ′
µ(x)| �= 1 on a whole set, not just

at a periodic point. This motivates the definition of a hyperbolic set:

Definition 5.7. A set Γ ⊂ R is a repelling (resp. attracting) hyperbolic
set for f if Γ is closed, bounded and invariant under f and there exists an
N > 0 such that |(fn)′(x)| > 1 (resp. < 1) for all n ≥ N and all x ∈ Γ.

The Cantor set Λ for the quadratic map when µ > 2 +
√

5 is of course a
repelling hyperbolic set with N = 1.

Exercises

1. Prove that F2(x) = 2x(1 − x) satisfies: if 0 < x < 1, then Fn
2 (x) →

1/2 as n → ∞.

2. Sketch the graph of F n
4 (x) on the unit interval, where F4(x) = 4x(1−x).

Conclude that F4 has at least 2n periodic points of period n.

3. Sketch the graph of the tent map

T2(x) =
{

2x 0 ≤ x ≤ 1/2
2 − 2x 1

2 ≤ x ≤ 1

on the unit interval. Use the graph of T n
2 to conclude that T2 has exactly 2n

periodic points of period n.
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4. Prove that the set of all periodic points of T (x) are dense in [0, 1].

5. Sketch the graph of the baker map

B(x) =
{

2x 0 ≤ x < 1/2
2x − 1 1/2 ≤ x < 1 .

How many periodic points of period n does B have?
6. The following exercises deal with the family of functions F (x) = x3 −λx
for λ > 0.

a. Find all periodic points and classify them when 0 < λ < 1.
b. Prove that, if |x| is sufficiently large, then |fn(x)| → ∞.
c. Prove that if λ is sufficiently large, then the set of points which do

not tend to infinity is a Cantor set.
7. Prove that the Cantor Middle-Thirds set described in Example 5.5 is
closed, nonempty, perfect, and totally disconnected.

8. Show that, at the nth stage of the construction of the Cantor Middle-
Thirds set, the sum of the lengths of the remaining intervals is

1 − 1
3

( n∑
i=1

(2
3

)i−1)
.

Conclude that the sum of the lengths of these intervals tends to 0 as n → ∞.
9. Construct a Middle-Fifths Cantor set in which the middle fifth of each
remaining subinterval of the unit interval is removed. What can be said
about the sum of the lengths of the remaining intervals in this case?
10. Let Γ be the Cantor Middle-Thirds set. Prove that the linear map
L(x) = 3x maps Γ ∩ [0, 1

3 ] homeomorphically onto Γ.
11. Generalize Exercise 10 to show that the portion of Γ contained in an
interval remaining at the nth stage of the construction of Γ is homeomorphic
to Γ.

§1.6 SYMBOLIC DYNAMICS

Our goal in this section is to give a model for the rich dynamical structure
of the quadratic map on the Cantor set Λ discussed in the previous section.
To do this we will set up a model mapping which is completely equivalent
to F . At first, this model may seem artificial and unintuitive. But, as we go



40 ONE-DIMENSIONAL DYNAMICS

along, it will become clear that such symbolic models describe the dynamics
of F completely and also in the simplest possible way.

We need a “space” on which our model map will act. The points in
this space will be infinite sequences of 0’s and 1’s. We don’t worry about
convergence of these sequences; rather, the difficult notion here is to imagine
such an infinite sequence as representing a single “point” in space.

Definition 6.1. Σ2 = {s = (s0s1s2 . . .)|sj = 0 or 1}.

Σ2 is called the sequence space on the two symbols 0 and 1. More gener-
ally, we can consider the space Σn consisting of infinite sequences of integers
between 0 and n − 1. Elements of Σ2 are infinite strings of integers, like
(000...) or (0101...). We may make Σ2 into a metric space as follows. For
two sequences s = (s0s1s2 . . .) and t = (t0t1t2 . . .), define the distance be-
tween them by

d[s, t] =
∞∑
i=0

|si − ti|
2i

Since |si − ti| is either 0 or 1, this infinite series is dominated by the
geometric series

∞∑
i=0

1
2i

= 2

and therefore it converges.
For example, if s = (000...) and t = (111...), then d[s, t] = 2. If r =

(1010...), then

d[s, r] =
∞∑
i=0

1
22i

=
1

1 − 1
4

=
4
3
.

Proposition 6.2. d is a metric on Σ2.

Proof. Clearly, d[s, t] ≥ 0 for any s, t ∈ Σ2, and d[s, t] = 0 iff si = ti for all
i. Since |si − ti| = |ti − si|, it follows that d[s, t] = d[t, s]. Finally, if r, s,
and t ∈ Σ2, then |ri − si| + |si − ti| ≥ |ri − ti| from which we deduce that
d[r, s] + d[s, t] ≥ d[r, t].

q.e.d.
The metric d allows us to decide which subsets of Σ2 are open and which

are closed, as well as which sequences are close to each other.
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Proposition 6.3. Let s, t ∈ Σ2 and suppose si = ti for i = 0, 1, . . . , n. Then
d[s, t] ≤ 1/2n. Conversely, if d[s, t] < 1/2n, then si = ti for i ≤ n.

Proof. If si = ti for i ≤ n, then

d[s, t] =
n∑

i=0

|si − si|
2i

+
∞∑

i=n+1

|si − ti|
2i

≤
∞∑

i=n+1

1
2i

=
1
2n

.

On the other hand, if sj �= tj for some j ≤ n, then we must have

d[s, t] ≥ 1
2j

≥ 1
2n

consequently, if d[s, t] < 1/2n, then si = ti for i ≤ n.
q.e.d.

The importance of this result is that we can decide quickly whether or
not two sequences are close to each other. Intuitively, this result says that
two sequences in Σ2 are close provided their first few entries agree. We now
define the most important ingredient in symbolic dynamics, the shift map
on Σ2.

Definition 6.4. The shift map σ: Σ2 → Σ2 is given by σ(s0s1s2 . . .) =
(s1s2s3 . . .).

The shift map simply “forgets” the first entry in a sequence, and shifts
all other entries one place to the left. Clearly, σ is a two-to-one map of Σ2,
as s0 may be either 0 or 1. Moreover, in the metric defined above, σ is a
continuous map.

Proposition 6.5. σ: Σ2 → Σ2 is continuous.

Proof. Let ε > 0 and s = s0s1s2 . . . . Pick n such that 1/2n < ε. Let
δ = 1/2n+1. If t = t0t1t2 . . . satisfies d[s, t] < δ, then by Proposition 6.3 we
have si = ti for i ≤ n + 1. Hence the ith entries of σ(s) and σ(t) agree for
i ≤ n. Therefore d[σ(s), σ(t)] ≤ 1/2n < ε.

q.e.d.
In the next section, we will show that the shift map is an exact model

for the quadratic map Fµ when µ > 4. Here we will simply show that
the dynamics of σ can be understood completely. For example, periodic
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points correspond exactly to repeating sequences, i.e., sequences of the form
s = (s0 . . . sn−1, s0 . . . sn−1, s0 . . . sn−1 . . .). Hence there are 2n periodic points
of period n for σ, each generated by one of the 2n finite sequence of 0’s and
1’s of length n.

Eventually periodic points are equally abundant and easy to recognize.
For example, any sequence of the form (s0 . . . sn1111 . . .) is eventually fixed,
while any eventually repeating sequence is eventually periodic for σ.

Another interesting fact about σ is that periodic points form a dense
subset of Σ2. Recall that a subset is dense in Σ2 provided its closure is the
entire space Σ2. To prove that Per(σ) is dense, we must produce a sequence of
periodic points τn which converge to an arbitrary point s = (s0s1s2 . . .) in Σ2.
We define the sequence τn = (s0 . . . sn, s0 . . . sn, . . .), i.e., τn is the repeating
sequence whose entries agree with s up to the nth entry. By Proposition 6.3,
d[τn, s] ≤ 1/2n, so that we have τn → s.

Of course, not all points in Σ2 are periodic or eventually periodic. Any
non-repeating sequence can never be periodic. In fact, the non-periodic
sequences greatly outnumber the periodic sequences in Σ2. Moreover, there
are non-periodic orbits in Σ2 which wind densely about Σ2, i.e., the closure
of the orbit is Σ2 itself. Another way to say this is there are points in Σ2
whose orbit comes arbitrarily close to any given sequence in Σ2. To see this,
consider

s∗ = ( 0 1︸︷︷︸
1blocks

| 00 01 10 11︸ ︷︷ ︸
2blocks

| 000 001 · · ·︸ ︷︷ ︸
3blocks

| · · ·︸︷︷︸
4blocks

).

s∗ is constructed by successively listing all blocks of 0’s and 1’s of length n,
then length n + 1, etc. Clearly, some iterate of σ applied to s∗ yields a se-
quence which agrees with any given sequence in an arbitrarily large number
of places. Mappings which have dense orbits are called topologically transi-
tive.

Let us list these properties of σ:

Proposition 6.6.
1. The cardinality of Pern(σ) is 2n.
2. Per(σ) is dense in Σ2.
3. There exists a dense orbit for σ in Σ2.

In the next section, we will show that the shift map on Σ2 is in fact the
“same” map as f on Λ.

Symbolic dynamics is one of the main themes of this book. It will ap-
pear in various guises throughout, including later in this chapter when we
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introduce subshifts of finite type and also the kneading theory to describe
the dynamics of Fµ when µ < 4.

Exercises

1. Let
s = (001 001 001 . . .)

t = (01 01 01 . . .)

r = (10 10 10 . . .).

Compute:
a. d[s, t]
b. d[t, r]
c. d[s, r].

2. Identify all sequences in Σ2 which are periodic points of period 3 for σ.
Which sequences lie on the same orbit under σ?
3. Rework Exercise 2 for periods four and five.
4. Let Σ′ consist of all sequences in Σ2 satisfying: if sj = 0 then sj+1 = 1.
In other words, Σ′ consists of only those sequences in Σ2 which never have
two consecutive zeros.

a. Show that σ preserves Σ′ and that Σ′ is a closed subset of Σ.
b. Show that periodic points of σ are dense in Σ′.
c. Show that there is a dense orbit in Σ′.
d. How many fixed points are there for σ, σ2, σ3 in Σ′ ?
e. Find a recursive formula for the number of fixed points of σn in terms

of the number of fixed points of σn−1 and σn−2.

5. Let ΣN consist of all sequences of natural numbers 1, 2, . . . , N . There is
a natural shift on ΣN .

a. How many periodic points does σ have in ΣN ?
b. Show that σ has a dense orbit in ΣN .

6. Let s ∈ Σ2. Define the stable set of s, W s(s), to be the set of sequences
t such that d[σi(s), σi(t)] → 0 as i → ∞. Identify all of the sequences in
W s(s).
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§1.7 TOPOLOGICAL CONJUGACY

The goal of this section is to relate the shift map discussed in the previ-
ous section to the quadratic map Fµ(x) = µx(1 − x) when µ is sufficiently
large. Recall that all points in R tend to −∞ under iteration of Fµ with
the exception of those points in the Cantor set Λ. In order to complete the
description of the dynamics of Fµ, we must then understand the restriction
of Fµ to Λ.

Recall first that Λ ⊂ I0 ∪I1. If x ∈ Λ, then all points on the orbit of x lie
in Λ and hence in one of these two intervals. We can thus get a rough idea
of the behavior of the orbit by noting in which of these intervals the various
iterates of x fall. Accordingly, we make the following definition.

Definition 7.1. The itinerary of x is a sequence S(x) = s0s1s2 . . . where
sj = 0 if F j

µ(x) ∈ I0, sj = 1 if F j
µ(x) ∈ I1.

Thus the itinerary of x is an infinite sequence of 0’s and 1’s. That is,
S(x) is a point in the sequence space Σ2. We think of S as a map from Λ to
Σ2. This map has several interesting properties.

Theorem 7.2. If µ > 2 +
√

5, then S : Λ → Σ2 is a homeomorphism.

Proof. We first show that S is one-to-one. Let x, y ∈ Λ and suppose S(x) =
S(y). Then, for each n, Fn

µ (x) and Fn
µ (y) lie on the same side of 1/2.

This implies that Fµ is monotonic on the interval between F n
µ (x) and Fn

µ (y).
Consequently, all points in this interval remain in I0 ∪ I1. This contradicts
the fact that Λ is totally disconnected.

To see that S is onto, we first introduce the following notation. Let J ⊂ I
be a closed interval. Let

F−n
µ (J) = {x ∈ I|Fn

µ (x) ∈ J}.

In particular, F−1
µ (J) denotes the preimage of J . Observe that, if J ⊂ I is a

closed interval, then F−1
µ (J) consists of two subintervals, one in I0 and one

in I1. See Fig. 7.1.
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Fig. 7.1. The preimage of a closed interval J is a
pair of closed intervals, one in I0 and one in I1.

Now let s = s0s1s2 . . . . We must produce x ∈ Λ with S(x) = s. To that
end we define

Is0s1...sn = {x ∈ I|x ∈ Is0 , Fµ(x) ∈ Is1 , . . . , F
n
µ (x) ∈ Isn}

= Is0 ∩ F−1
µ (Is1) ∩ . . . ∩ F−n

µ (Isn).

We claim that the Is0...sn form a nested sequence of nonempty closed intervals
as n → ∞. Note that

Is0s1...sn = Is0 ∩ F−1
µ (Is1...sn).

By induction, we may assume that Is1...sn is a nonempty subinterval, so that,
by the observation above, F−1

µ (Is1...sn) consists of two closed intervals, one
in I0 and one in I1. Hence Is0 ∩ F−1

µ (Is1...sn) is a single closed interval.
These intervals are nested because

Is0...sn = Is0...sn−1 ∩ F−n
µ (Isn) ⊂ Is0...sn−1 .

Therefore we conclude that ⋂
n≥0

Is0s1...sn

is nonempty. Note that if x ∈ ∩n≥0Is0s1...sn, then x ∈ Is0 , Fµ(x) ∈ Is1, etc.
Hence S(x) = (s0s1 . . .). This proves that S is onto.
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Note that ∩n≥0Is0s1...sn consists of a unique point. This follows im-
mediately from the fact that S is one-to-one. In particular, we have that
diam Is0s1...sn → 0 as n → ∞.

Finally, to prove continuity of S, we choose x ∈ Λ and suppose that
S(x) = s0s1s2 . . . . Let ε > 0. Pick n so that 1/2n < ε. Consider the closed
subintervals It0t1...tn defined above for all possible combinations t0t1 . . . tn.
These subintervals are all disjoint, and Λ is contained in their union. There
are 2n+1 such subintervals, and Is0s1...sn is one of them. Hence we may choose
δ such that |x − y| < δ and y ∈ Λ implies that y ∈ Is0s1...sn. Therefore, S(y)
agrees with S(x) in the first n + 1 terms. Hence, by Proposition 6.3,

d[S(x), S(y)] <
1
2n

< ε.

This proves the continuity of S. It is easy to check that S−1 is also continuous.
Thus, S is a homeomorphism.

q.e.d.
This theorem shows that, as sets, Λ and Σ2 are the same. More impor-

tantly, the coding S also gives an equivalence between the dynamics of Fµ

on Λ and σ on Σ2. This is the content of the following theorem.

Theorem 7.3. S ◦ Fµ = σ ◦ S.

Proof. A point x in Λ may be defined uniquely by the nested sequence of
intervals ⋂

n≥0
Is0s1...sn...

determined by the itinerary S(x). Now

Is0...sn = Is0 ∩ F−1
µ (Is1) ∩ . . . ∩ F−n

µ (Isn)

so that Fµ(Is0...sn) may be written

Is1 ∩ F−1
µ (Is2) ∩ . . . F−n+1

µ (Isn) = Is1...sn ,

since Fµ(Is0) = I. Hence

SFµ(x) = SFµ

(
∩∞

n=0Is0s1...sn

)

= S
(
∩∞

n=1Is1...sn

)
= s1s2... = σS(x).

q.e.d.
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Definition 7.4. Let f :A → A and g:B → B be two maps. f and g are said
to be topologically conjugate if there exists a homeomorphism h: A → B such
that, h ◦ f = g ◦ h. The homeomorphism h is called a topological conjugacy.

Mappings which are topologically conjugate are completely equivalent in
terms of their dynamics. For example, if f is topologically conjugate to g via
h, and p is a fixed point for f , then h(p) is fixed for g. Indeed, h(p) = hf(p) =
gh(p). Similarly, h gives a one-to-one correspondence between Pern(f) and
Pern(g). One may also check that eventually periodic and asymptotic orbits
for f go over via h to similar orbits for g, and that f is topologically transitive
if and only if g is. In particular, since Fµ on Λ is topologically conjugate
to the shift, we have now proved that the quadratic map enjoys the striking
properties we uncovered so easily for σ in the last section. These may be
summarized as follows.

Theorem 7.5. Let Fµ(x) = µx(1 − x) with µ > 2 +
√

5. Then
1. The cardinality of Pern(Fµ) is 2n.
2. Per(Fµ) is dense in Λ.
3. Fµ has a dense orbit in Λ.

This Theorem shows the power of symbolic dynamics and topological
conjugacy. Actually computing the 2n periodic points of period n for Fµ

is a hopeless task. But topological conjugacy guarantees that these orbits
are there, and, moreover, symbolic dynamics gives a rough measure of the
complexity of the orbits in Λ. Thus these two notions provide justification
for our statement that the shift map is an accurate model for the quadratic
map.

Exercises

1. Let Qc(x) = x2 + c. Prove that if c < 1/4, there is a unique µ > 1 such
that Qc is topologically conjugate to Fµ(x) = µx(1 − x) via a map of the
form h(x) = αx + β.

2. A point p is a non-wandering point for f , if, for any open interval J
containing p, there exists x ∈ J and n > 0 such that fn(x) ∈ J . Note
that we do not require that p itself return to J . Let Ω(f) denote the set of
non-wandering points for f .

a. Prove that Ω(f) is a closed set.
b. If Fµ is the quadratic map with µ > 2 +

√
5, show that Ω(Fµ) = Λ.

c. Identify Ω(Fµ) for each µ satisfying 0 < µ ≤ 3.
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3. A point p is recurrent for f if, for any open interval J about p, there
exists n > 0 such that fn(p) ∈ J . Clearly, all periodic points are recurrent.

a. Give an example of a non-periodic recurrent point for Fµ when µ >

2 +
√

5.
b. Give an example of a non-wandering point for Fµ which is not recur-

rent.

4. Order of the periodic points. Let Γn denote the set of repeating sequences
of period n in Σ2. Identify such a sequence with a finite string s1, . . . , sn of
0’s and 1’s in the natural way. Under the topological conjugacy, each element
of Γn corresponds to a unique point in I for a given value of µ > 2 +

√
5.

a. Prove that the order of these points in I is independent of µ > 2+
√

5.
Let N(s1, . . . , sn) denote the integer between 0 and 2n−1 correspond-
ing to this order, numbering from left to right, i.e., N(0, . . . , 0) = 0.
Let B(s1, . . . , sn) denote N in binary form. That is, B(s1, . . . , sn) =
(a1, . . . , an) where aj = 0 or 1 and

N(s1, . . . , sn) = a1 · 2n−1 + a2 · 2n−2 + . . . + an · 20.

b. Use induction to prove that B is given by the following formula:

aj =
j∑

i=1
sj mod 2.

For example, the fixed point 1, 1, 1 ∈ Γ3 occupies position 5 on the
real line since

a1 = s1 = 1
a2 = s1 + s2 = 0 mod 2
a3 = s1 + s2 + s3 = 1 mod 2.

c. List all points in Γn for n = 2, 3, 4 according to this ordering.
d. Describe an algorithm for ordering the points in Γn knowing the

ordering of Γn−1.
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§1.8 CHAOS

The quadratic map exhibits in stunning fashion a phenomenon which
is only partially understood: the chaotic behavior of orbits of a dynamical
system. There are many possible definitions of chaos, ranging from measure
theoretic notions of randomness in ergodic theory to the topological approach
we will adopt here.

Definition 8.1. f :J → J is said to be topologically transitive if for any
pair of open sets U, V ⊂ J there exists k > 0 such that fk(U) ∩ V �= ∅.

Intuitively, a topologically transitive map has points which eventually
move under iteration from one arbitrarily small neighborhood to any other.
Consequently, the dynamical system cannot be decomposed into two disjoint
open sets which are invariant under the map. Note that if a map possesses
a dense orbit, then it is clearly topologically transitive. The converse is also
true (for compact subsets of R or S1 ), but we will not prove it here since
the proof depends on the Baire Category Theorem.

Definition 8.2. f :J → J has sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ J and any neighborhood N of x,
there exists y ∈ N and n ≥ 0 such that |fn(x) − fn(y)| > δ.

Intuitively, a map possesses sensitive dependence on initial conditions if
there exist points arbitrarily close to x which eventually separate from x by
at least δ under iteration of f . We emphasize that not all points near x need
eventually separate from x under iteration, but there must be at least one
such point in every neighborhood of x. If a map possesses sensitive depen-
dence on initial conditions, then for all practical purposes, the dynamics of
the map defy numerical computation. Small errors in computation which are
introduced by round-off may become magnified upon iteration. The results
of numerical computation of an orbit, no matter how accurate, may bear no
resemblance whatsoever with the real orbit.

Example 8.3. The quadratic map µx(1 − x) with µ > 2 +
√

5 possesses
sensitive dependence on initial conditions on Λ. To see this, choose δ less
than the diameter of A0, where A0 is the gap between I0 and I1. Let x, y ∈ Λ.
If x �= y, then S(x) �= S(y), so the itineraries of x and y must differ in at
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least one spot, say the nth. But this means that Fn
µ (x) and Fn

µ (y) lie on
opposite sides of A0, so that

|Fn
µ (x) − Fn

µ (y)| > δ.

Example 8.4. An irrational rotation of the circle is topologically transi-
tive but not sensitive to initial conditions, since all points remain the same
distance apart after iteration.

We turn now to one of the main themes of this book, the notion of a
chaotic dynamical system. There are many possible definitions of chaos in
a dynamical system, some stronger and some weaker than ours. We choose
this particular definition because it applies to a large number of important
examples and because, in many cases, it is easy to verify.

Definition 8.5. Let V be a set. f :V → V is said to be chaotic on V if
1. f has sensitive dependence on initial conditions.
2. f is topologically transitive.
3. periodic points are dense in V .

To summarize, a chaotic map possesses three ingredients: unpredictabil-
ity, indecomposability, and an element of regularity. A chaotic system is
unpredictable because of the sensitive dependence on initial conditions. It
cannot be broken down or decomposed into two subsystems (two invariant
open subsets) which do not interact under f because of topological transi-
tivity. And, in the midst of this random behavior, we nevertheless have an
element of regularity, namely the periodic points which are dense.
Example 8.6. f : S1 → S1 given by f(θ) = 2θ is chaotic. As we have
seen, the angular distance between two points is doubled upon iteration
of f . Hence f is sensitive to initial conditions. Topological transitivity also
follows from this observation since any small arc in S1 is eventually expanded
by some fk to cover all of S1 and, in particular, any other arc in S1. The
density of periodic points was established in §1.3. We remark that this map
possesses a strong form of sensitive dependence called expansiveness.

Definition 8.7. f :J → J is expansive if there exists ν > 0 such that, for
any x, y ∈ J , x �= y, there exists n such that |fn(x) − fn(y)| > ν.

Expansiveness differs from sensitive dependence in that all nearby points
eventually separate by at least ν.

Example 8.8. The quadratic maps Fµ(x) = µx(1 − x) are chaotic on Λ
when µ > 2 +

√
5.
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This example differs markedly from the previous example in that the
chaos is confined to a small subset of I, namely the Cantor set Λ. A much
larger chaotic region for a quadratic map is given by the following example.

Example 8.9. F4(x) = 4x(1 − x) is chaotic on the interval I = [0, 1].

Proof. Let g(θ) = 2θ be the map on S1 discussed in Example 8.6. Define
h1:S1 → [−1, 1] by h1(θ) = cos θ. That is, h1 is just projection from S1 to
the x-axis. Let q(x) = 2x2 − 1. Then we have

h1 ◦ g(θ) = cos(2θ)

= 2 cos2 θ − 1
= q ◦ h1(θ)

so that h1 conjugates g with q. Now q is also topologically conjugate to F4.
Indeed, if h2(t) = 1

2(1− t), then we have F4 ◦h2 = h2 ◦ q. Hence we have the
following diagram

S1 g
−→ S1

h1




 h1

[−1, 1] q
−→ [−1, 1]

h2




 h2

[0, 1] F4
−→ [0, 1].

It follows immediately that F4 is topologically transitive, for if U and V are
two open intervals in I, we may choose open arcs Û and V̂ in S1 which project
onto U and V under h2 ◦ h1. Since there exists k such that gk(Û) ∩ V̂ �= ∅,
we therefore have F k

4 (U) ∩ V �= ∅.
To prove sensitive dependence, we note that any neighborhood U of x ∈ I

“lifts” to Û in S1. There exists n such that gn(Û) covers S1, so Fn
4 (U) covers

I as well. Hence there are points in U which move at least δ = 1/2 away from
x. Finally, density of periodic points for g implies that there is a g-periodic
point in Û . The projection of this point in U is clearly F4-periodic.

The technique introduced in this Example can also be used to produce
other examples of maps which are chaotic on an interval. The so-called
Tchebycheff polynomials are important classical examples which feature this
type of behavior. See Exercises 1-3.

We remark that the map h1 above is not a homeomorphism since it is a
two-to-one at most points. Thus we have not shown that g(θ) = 2θ on S1
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and F4 are topologically conjugate. Rather, we say that these two maps are
semi-conjugate.

Exercises

1. Use the method of Example 8.9 to prove that F (x) = 4x3 −3x is chaotic
on the interval [−1, 1]. (Hint: consider g(θ) = 3θ on S1.)
2. Prove that F (x) = 8x4 − 8x2 + 1 is chaotic on [−1, 1].
3. The polynomial which is given as in Exercises 1 and 2 by projection of
g(θ) = cosnθ onto the interval [−1, 1] is called the nth Tchebycheff polyno-
mial, when properly normalized. Show that these polynomials satisfy the
differential equation

(1 − x2)y′′ − xy′ + α2y = 0

where α is a positive integer.
4. Prove that T (x) = tanx is chaotic on the entire real line, despite the
fact that there are a dense set of points at which an iterate of T fails to be
defined.
5. Prove that the baker map

B(x) =




2x 0 ≤ x ≤ 1
2

2x − 1 1
2 ≤ x ≤ 1

is chaotic on [0, 1].
The following exercises apply to the tent map

T2(x) =




2x 0 ≤ x ≤ 1/2

2(1 − x) 1/2 ≤ x ≤ 1
.

Note that the maximum of T2 is 1 and occurs at x = 1
2 . To describe the

dynamics of T2 via symbolic dynamics, we thus need to modify Σ2 somewhat
since there is an ambiguity in the sequence associated to any rational number
of the form p/2k where p is an integer. For example, 1/2 may be described by
either (11000...) or (01000...). To remedy this, we identify any two sequences
of the form (s0 . . . sk−1∗1000...), where ∗ = 0 or 1. For example, the sequences
(1101000...) and (1111000...) are to be thought of as representing the same
point. Let Σ′

2 denote Σ2 with these identifications.
6. Prove that S: I → Σ′

2 is one-to-one, where S(x) is defined as in §1.7.
7. Prove that σ ◦ S = S ◦ T2.
8. Prove that T2 has exactly 2n periodic points of period n.
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9. Prove that T2 is chaotic on I.

10. Prove that T2 is topologically conjugate to the quadratic map F4(x) =
4x(1 − x).

11. Construct a piecewise linear map on [0, 1] which is topologically con-
jugate to F (x) = 4x3 − 3x on [−1, 1].

§1.9 STRUCTURAL STABILITY

A very important notion in the study of dynamical systems is the stability
or persistence of the system under small changes or perturbations. This is the
concept of structural stability which we introduce in this section. Briefly, a
map f is structurally stable if every “nearby” map is topologically conjugate
to f and so has essentially the same dynamics. Clearly, we need to be precise
about what nearby means, but the basic idea is simple. If, no matter how we
perturb f or change f slightly, we get an equivalent dynamical system, then
the dynamical structure of f is stable. Here, equivalent means topologically
conjugate. If f and g are topologically conjugate, we will write f ∼ g.

The notion of structural stability is extremely important in applications.
Suppose our dynamical system is the solution of a differential equation or
otherwise comes from a real world physical system. Ordinarily, the system
itself will be only a model of real world phenomena: certain assumptions will
have been made, and certain approximations and experimental errors will
be present. Hence the dynamical system itself, albeit a completely accurate
solution of the physical model, will nevertheless be only an approximation to
reality since the model itself suffers this flaw. Now, if the dynamical system in
question is not structurally stable, then the small errors and approximations
made in the model have a chance of dramatically changing the structure of
the real solution to the system. That is, our “solution” could be radically
wrong or unstable. If, on the other hand, the dynamical system in question
is structurally stable, then the small errors introduced by approximations
and experimental errors may not matter at all: the solution to the model
system may be equivalent or topologically conjugate to the actual solution.

This does not mean that the only interesting physical systems are the
structurally stable ones. Indeed, most dynamical systems that arise in clas-
sical mechanics are not structurally stable. There are also simple examples
of systems such as the Lorenz system from meteorology that are “far” from
being structurally stable. These systems cannot even be approximated in a
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sense to be made precise below by stable systems. Nevertheless, the concept
of structural stability is an important one in applications of the theory of
dynamical systems.

To begin the discussion of structural stability, we need to make precise
the notion of “nearness” of two functions.

Definition 9.1. Let f and g be two maps. The C0-distance between f and
g, written d0(f, g), is given by

d0(f, g) = sup
x∈R

|f(x) − g(x)|.

The Cr-distance dr(f, g) is given by

dr(f, g) = sup
x∈R

(|f(x) − g(x)|, |f ′(x) − g′(x)|, . . . , |f (r)(x) − g(r)(x)|).

Intuitively, two maps are Cr-close provided they as well as their first r
derivatives differ by only a small amount. We may also consider the Cr-
distance between two maps on an interval J ⊂ R by suitably restricting x
and y. We caution the reader that dr does not give a useful metric on the set
of all functions. Indeed, since the real line is unbounded, two maps can easily
be infinitely far apart. Moreover, even if we assume this difficulty away, the
resulting topology on the set of functions is nasty. Hence we will use the
Cr-distance only as a measure of the proximity of two functions and not as
a global metric on all maps.

Example 9.2. f(x) = 2x and g(x) = (2 + ε)x have C0-distance infinity.
But f(x) = 2x and g(x) = 2x + ε are Cr-ε apart for all r. Let J = [0, 10].
Then f(x) = 2x and g(x) = (2 + ε)x are C0-10ε apart (and, in fact, Cr-10ε
apart) on the interval J .

We will be primarily concerned with functions that are C1-close or, at
most, C2-close. Fig. 9.1 illustrates the difference graphically between C0-
close, C1-close, and C2-close.

We now define Cr-structural stability.

Definition 9.3. Let f :J → J . f is said to be Cr-structurally stable on J ,
if there exists ε > 0 such that whenever dr(f, g) < ε for g:J → J , it follows
that f is topologically conjugate to g.

Example 9.4. Let L(x) = 1
2x. Then L is C1-structurally stable on R. To

see this, we must exhibit an ε > 0 such that, if d1(L, g) < ε, then L and
g are topologically conjugate. We claim that any ε < 1/2 works. For if
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Fig. 9.1. In Fig. a, f and g are C0-close
but not C1-close. In Fig. b, f and g are

C1-close but not C2-close.

d1(L, g) < ε, then we must have 0 < g′(x) < 1 for all x ∈ R. In particular,
g(x) is everywhere increasing. Note also that g(x) has a unique attracting
fixed point p in R and that all points in R tend to p under iteration. That
g has a unique fixed point follows from the Mean Value Theorem: between
any two fixed points of g must lie a point with derivative = 1, which cannot
happen. Alternatively, since |g′(x)| < 1, g is a global contraction.

This shows that L and g have the same dynamics, the basic idea be-
hind structural stability. To be strictly precise, however, we must exhibit a
topological conjugacy between L and g. To do this, we introduce the no-
tion of a fundamental domain. This is best done by example. Consider the
pair of intervals 5 < |x| ≤ 10. Note that the L-orbit of any point in R
(with the exception of 0) enters this set exactly once. For g, we may find
a similar fundamental domain: indeed, it is easy to check that the intervals
g(10) < x ≤ 10 and −10 ≤ x < g(−10) have the same property (Exercise 1.)

We now construct a conjugacy h such that h ◦ L = g ◦ h. First define
h: [5, 10] → [g(10), 10] and h: [−10, −5] → [−10, g(−10)] to be linear, i.e.,
with a straight line graph. We require that h be increasing so that h(±10) =
±10. (We remark that any other increasing homeomorphism works just as
well.) We complete the definition of h as follows. Let x �= 0. There is an
n ∈ Z such that Ln(x) belongs to the fundamental domain for L. Hence
h◦Ln(x) is well-defined. We then set h(x) = g−n ◦h◦Ln(x). Note that h(x)
is also well-defined, since g is a homeomorphism and so g−n makes sense.
Clearly, we have gn ◦ h(x) = h ◦ Ln(x). Moreover, if we apply the same
construction to L(x), we find that g ◦ h(x) = h ◦ L(x), as required. Finally,
define h(0) = fixed point of g. It is easy to check that h as defined is a
homeomorphism.
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Intuitively, a fundamental domain is visited exactly once by each orbit,
except, of course, the fixed point. Hence we may define a conjugacy in
virtually any way we please on the fundamental domain, and then extend
in the only way possible by iterating the map. The only question is then
whether or not we can extend the conjugacy to points whose orbits never
enter the fundamental domain.

We now return to the quadratic map Fµ(x) = µx(1 − x). As we saw in
§1.5, all points tend to −∞ for this map with the exception of those in a set
Λ on which Fµ is topologically conjugate to the shift. We claim that, if µ
is large enough, then Fµ is C2-structurally stable. This may be proved by
another fundamental domain argument.

This is more complicated, but let us sketch the details. We first assume
that µ > 2 +

√
5, so that |F ′

µ(x)| > 1 on I0 ∪ I1. We will produce an ε > 0
such that if g is C2-ε close to Fµ, then g has the same dynamics as Fµ. Let
us first choose ε1 small enough so that if g is C2- ε1 close to Fµ, then g′′ < 0,
i.e., so that the graph of g is concave down. This is clearly possible since
F ′′

µ ≡ −2µ. Next choose ε2 < ε1 small enough so that if g is C1-ε2 close to
Fµ, then g has two fixed points, α and β, which satisfy

1. α < β,
2. g′(α) > 1,
3. g′(β) < −1.

The fact that ε2 may be chosen so that g has at most two fixed points follows
from the concavity of the graph of g. The fact that g has at least two fixed
points can be guaranteed by making g C0-close to Fµ. Finally, the conditions
on g′ at the fixed points are controlled by the C1-distance of g from Fµ.

Note that g has a unique critical point c and that there exist points α′, β′

with g(α′) = α, g(β′) = β. The points α and α′ play the same role as 0 and
1 do for Fµ.

We may finally choose ε < ε2 such that, if g is C1-ε close to Fµ, then
g−1(α′) consists of a pair of points, a0 and a1, and moreover, if x ∈ [α, a0] ∪
[a1, α

′], then |g′(x)| > 1. Thus, if g is C2-ε close (and therefore C0- and C1 -
ε close) to Fµ, then the graph of g has all of the qualitative properties of the
graph of Fµ on the interval [α,α′]. See Fig. 9.2.

More importantly, Fµ and g have the same dynamics. It follows immedi-
ately that if x < α, then gn(x) → −∞. Similarly, if x > α′ or if x ∈ (a0, a1),
then gn(x) → −∞ as well. A similar inductive procedure on the inverse
images of (a0, a1) as in §1.5 shows that all points except those in a Cantor
set Λg tend to −∞ eventually under iteration of g. On Λg, g is again topo-
logically conjugate to the shift automorphism via arguments as in §1.5. We
leave the details to the reader.
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Fig. 9.2. The graphs of Fµ and g are C2-ε close.

To prove that Fµ ∼ g, we must construct fundamental domains for both
Fµ and g in order to define the conjugacy. This can be accomplished as
follows. First choose x0 < min(g2(c), F 2

µ(c)). The intervals (Fµ(x0), x0) and
(g(x0), x0) are easily seen to be fundamental domains for Fµ on R− and g
on (−∞, α). The conjugacy may then be defined arbitrarily on (Fµ(x0), x0)
and extended by h ◦ Fµ = g ◦ h to all of R−.

We then extend h to the interval (1,∞) and finally to each An in the
natural way. We remark that care must be taken on A0 since Fµ is two-to-
one on this interval. Once h is defined on all of R − Λ, we extend to Λ in
the only way possible to make h a homeomorphism. We leave the tedious
details to the reader.

Alternatively, one can use the fact that both g on Λg and Fµ on Λ are
topologically conjugate to the shift, hence to each other on these sets. The
conjugacy may be extended off these sets by the above fundamental domain
argument. In either event we have proved

Theorem 9.5. The quadratic map Fµ(x) = µx(1 − x) is C2 structurally
stable if µ > 2 +

√
5.

Perhaps more important than the question of when a given map is struc-
turally stable is the converse question: when is it not structurally stable?
One of the major ways a map can fail to be structurally stable occurs when
there is a lack of hyperbolicity.

Example 9.6. Let F0(x) = x−x2. Note that F0(0) = 0 and F ′
0(0) = 1, so 0

is a non-hyperbolic fixed point. Consider Fε(x) = x − x2 + ε. Clearly, Fε(x)
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is Cr-ε close to F0. When ε > 0, Fε is easily seen to have two fixed points,
but when ε < 0, Fε has none. Consequently, the Fε do not have the same
dynamics as F0 and therefore F0 is not structurally stable.

Example 9.7. Let Tλ(x) = x3 − λx. For −1 < λ ≤ 1, Tλ has three
fixed points: at 0 and at ±

√
λ + 1. All points between ±

√
λ + 1 tend to

the attracting fixed point at 0. When λ > 1, this is no longer true. There
exists x in the interval [−

√
λ + 1,

√
λ + 1] such that Tλ(x) = −x, i.e., the

graph of Tλ crosses the line y = −x. Since Tλ(−x) = −Tλ(x), we also have
Tλ(−x) = x, so that x is a periodic point of period 2. Hence the dynamics of
Tλ is different for λ ≤ 1 and λ > 1, so that T1 is not structurally stable. We
remark that T−1 is also not structurally stable. See Exercise 2. Note that
T ′

1(0) = −1, so that the fixed point is again non-hyperbolic when structural
stability fails to hold.

A hyperbolic fixed point for f is C1 structurally stable locally. By this
we mean there is a neighborhood of the fixed point and an ε > 0 such that,
if a map g is C1-ε close to f on this neighborhood, then f is topologically
conjugate to g on this neighborhood. This fact is established in a series of
exercises below. Along the way, we establish the one-dimensional version of
Sternberg’s Theorem (sometimes called Hartman’s Theorem):

Theorem 9.8. Let p be a hyperbolic fixed point for f and suppose f ′(p) = λ
with |λ| �= 0, 1. Then there are neighborhoods U of p and V of 0 ∈ R and
a homeomorphism h: U → R which conjugates f on U to the linear map
L(x) = λx on V .

Thus a map near a hyperbolic fixed point is always locally topologically
conjugate to its derivative. This allows us to explain why we only require
that the conjugacy map in the definition of topological conjugacy be a home-
omorphism, not a diffeomorphism. Suppose f(p) = p and f ′(p) = λ. Let h
be a diffeomorphism. Then g = h ◦ f ◦ h−1 has a fixed point at h(p), but we
have

g′(h(p)) = h′(f(p)) · f ′(p) · (h−1)′(h(p))

= h′(p) · λ · 1
h′(p)

= λ.

Thus, the multiplier λ at the fixed point is preserved by differentiable con-
jugacies. As we have seen, maps may behave dynamically the same despite
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having different multipliers at the fixed points. Thus the weakened notion
of topological conjugacy is more appropriate for our purposes.

Exercises

1. Suppose g(x) is as in Example 9.4. Prove that the intervals g(10) < x ≤
10 and −10 ≤ x < g(−10) form a fundamental domain for g.

2. Let T−1(x) = x3 + x. Prove that T−1 is not structurally stable.

3. Let Tλ(x) = x3−λ(x). Prove that Tλ is structurally stable if −1 < λ < 0.

4. Prove that Tλ0 is topologically conjugate to Tλ1 if −1 < λ0, λ1 < 0.
5. Prove that F4(x) = 4x(1 − x) is not structually stable.
6. Prove that S(x) = sin(x) is not structurally stable.
7. Prove that, if f ∼ g via h and f has a local maximum at x0, then g has
either a local maximum or minimum at h(x0).
8. Give an example to show that we may have f ∼ g via h and x0 a local
maximum for f and h(x0) a local minimum for g.
9. Let Sλ(x) = λ sin(x). If 0 < λ1 < λ2 < 1, prove that Sλ1 ∼ Sλ2 .
10. Show, however, that neither Sλ1 nor Sλ2 is structurally stable.
11. We may define a notion of linear structural stability for linear maps
by replacing the notion of topological conjugacy by that of linear conjugacy.
Two linear maps T1, T2:R → R are linearly conjugate if there is a linear
map L such that T1 ◦ L = L ◦ T2. T1(x) = ax is linearly stable if there is
a neighborhood N about a such that if b ∈ N, then T2(x) = bx is linearly
conjugate to T1. Find all linearly stable maps and identify all elements of a
given conjugacy class.
12. (Sternberg’s Theorem) Let p be a hyperbolic fixed point for f with
f ′(p) = λ and λ �= 0. Prove that f is locally topologically conjugate to its
derivative map x → λx as described in Theorem 9.8.
13. Combine Exercises 11 and 12 to prove that any small perturbation of
a map near a hyperbolic fixed point is locally topologically conjugate to f .
14. Let f : [0, 1] → [0, 1] be a diffeomorphism. Prove that, if f ′(x) > 0, then
f has only fixed points and no periodic points. Prove that, if f ′(x) < 0, then
f has a unique fixed point and all other periodic points have period two.
15. A diffeomorphism f : [0, 1] → [0, 1] is called Morse-Smale if f has only
hyperbolic periodic points. (Note that, since f is onto, the endpoints of [0, 1]
are necessarily periodic.) Prove that a Morse-Smale diffeomorphism has only
finitely many periodic points.
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16. Prove that a Morse-Smale diffeomorphism of [0, 1] is structurally stable.

17. Prove that the map f(x) = x3 + 3
4x is a Morse-Smale diffeomorphism

on the interval [−1
2 , 1

2 ].

§1.10 SARKOVSKII’S THEOREM

In this section, we will prove a remarkable theorem due to Sarkovskii.
The theorem only holds for maps of the real line, but nevertheless is amazing
for its lack of hypotheses (f is only assumed continuous) and strong conclu-
sion. We caution the reader that, as this is our first major theorem, the
material in this section is a little “heavier” than in previous sections. As a
warmup, and also as a means of highlighting the importance of period three
points, we will prove a special case.

Theorem 10.1. Let f :R → R be continuous. Suppose f has a periodic
point of period three. Then f has periodic points of all other periods.

Proof. The proof will depend on two elementary observations. First, if I and
J are closed intervals with I ⊂ J and f(I) ⊃ J , then f has a fixed point in I.
This is, of course, a simple consequence of the Intermediate Value Theorem.
See Fig. 10.1.

Fig. 10.1
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Fig. 10.2. The map F3.839(x) = 3.839x(1 − x).

The second observation is the following: suppose A0, A1, . . . , An are closed
intervals and f(Ai) ⊃ Ai+1 for i = 0, . . . , n−1. Then there exists at least one
subinterval J0 of A0 which is mapped onto A1. There is a similar subinterval
in A1 which is mapped onto A2, and thus there is a subinterval J1 ⊂ J0
having the property that f(J1) ⊂ A1 and f2(J1) = A2. Continuing in this
fashion, we find a nested sequence of intervals which map into the various
Ai in order. Thus there exists a point x ∈ A0 such that f i(x) ∈ Ai for each
i. We say that f(Ai) covers Ai+1. See Exercise 1.

To prove the Theorem, let a, b, c ∈ R and suppose f(a) = b, f(b) = c,
and f(c) = a. We assume that a < b < c. The only other possibility,
f(a) = c, is handled similarly. This situation arises in the quadratic map Fµ

for sufficiently large µ, and even for some µ < 4. In fact, we will exploit this
fact later when we discuss the case µ = 3.839 in detail in §1.13. See Fig. 10.2.

Let I0 = [a, b] and I1 = [b, c] and note that our assumptions imply
f(I0) ⊃ I1 and f(I1) ⊃ I0 ∪ I1. The graph of f shows that there must be
a fixed point for f between b and c. Similarly, f2 must have fixed points
between a and b, and it is easy to see that at least one of these points must
have period two. So we let n ≥ 2; our goal then is to produce a periodic
point of prime period n > 3.

Inductively, we define a nested sequence of intervals A0, A1, . . . , An−2 ⊂
I1 as follows. Set A0 = I1. Since f(I1) ⊃ I1, there is a subinterval A1 ⊂
A0 such that f(A1) = A0 = I1. Then there is a subinterval A2 ⊂ A1
such that f(A2) = A1, so that f2(A2) = A0 = I1. Continuing, we find
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a subinterval An−2 ⊂ An−3 such that f(An−2) = An−3. According to our
second observation above, if x ∈ An−2, then f(x), f2(x), . . . , fn−2(x) ⊂ A0
and, indeed, fn−2(An−2) = A0 = I1.

Now since f(I1) ⊃ I0, there exists a subinterval An−1 ⊂ An−2 such that
fn−1(An−1) = I0. Finally, since f(I0) ⊃ I1 we have, fn(An−1) ⊃ I1 so that
fn(An−1) covers An−1. It follows from our first observations that fn has a
fixed point p in An−1.

We claim that p actually has prime period n. Indeed, the first n − 2
iterations of p lie in I1, the (n − 1)st lies in I0, and the nth is p again. If
fn−1(p) lies in the interior of I0 then it follows easily that p has prime period
n. If fn−1(p) happens to lie on the boundary, then n = 2 or 3, and again we
are done.

q.e.d.
This theorem is just the beginning of the story. Sarkovskii’s Theorem

gives a complete accounting of which periods imply which other periods
for continuous maps of R. Consider the following ordering of the natural
numbers:

3 
 5 
 7 
 · · · 
 2 · 3 
 2 · 5 
 · · · 
 22 · 3 
 22 · 5 
 · · ·

23 · 3 
 23 · 5 
 · · · · · · 
 23 
 22 
 2 
 1.

That is, first list all odd numbers except one, followed by 2 times the odds, 22

times the odds, 23 times the odds, etc. This exhausts all the natural numbers
with the exception of the powers of two which we list last, in decreasing order.
This is the Sarkovskii ordering of the natural numbers. Sarkovskii’s Theorem
is:

Theorem 10.2. Suppose f :R → R is continuous. Suppose f has a periodic
point of prime period k. If k 
 � in the above ordering, then f also has a
periodic point of period �.

Before proving this Theorem, we note several consequences.

Remarks.
1. If f has a periodic point whose period is not a power of two, then f nec-
essarily has infinitely many period points. Conversely, if f has only finitely
many periodic points, then they all necessarily have periods which are powers
of two. This fact will reappear when we discuss the period-doubling route
to chaos in a later section.
2. Period 3 is the greatest period in the Sarkovskii ordering and therefore
implies the existence of all other periods, as we saw above.
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3. The converse of Sarkovskii’s Theorem is also true! There are maps which
have periodic points of period p and no “higher” period points according to
the Sarkovskii ordering. We give several examples of this at the end of this
section.

We will give an elementary proof of Sarkovskii’s Theorem due to Block,
Guckenheimer, Misiurewicz and Young. The proof rests mainly on the two
observations which we used above. For two closed intervals, I1 and I2, we
will introduce the notation I1 → I2 if f(I1) covers I2. If we find a sequence
of intervals I1 → I2 → . . . → In → I1, then our previous observations show
that there is a fixed point of fn in I1.

We first assume that f has a periodic point x of period n with n odd
and n > 1. Suppose that f has no periodic points of odd period less than
n. Let x1, . . . , xn be the points on the orbit of x, enumerated from left to
right. Note that f permutes the xi. Clearly, f(xn) < xn. Let us choose
the largest i for which f(xi) > xi. Let I1 be the interval [xi, xi+1]. Since
f(xi+1) < xi+1, it follows that f(xi+1) ≤ xi and so we have that f(I1) ⊃ I1.
Therefore, I1 → I1.

Since x does not have period 2, it cannot be that f(xi+1) = xi and
f(xi) = xi+1 so that f(I1) contains at least one other interval of the form
[xj , xj+1]. A priori, there may be several such intervals, but we will see below
that in fact there is only one. Let O2 denote the union of intervals of the form
[xj , xj+1] that are covered by f(I1). Hence we have O2 ⊃ I1 but O2 �= I1,
and if I2 is any interval in O2 of the form [xj , xj+1], then I1 → I2.

Now let O3 denote the union of intervals of the form [xj , xj+1] that
have the property that they are covered by the image of some interval in
O2. Continuing inductively, we let O�+1 be the union of intervals that are
covered by the image of some interval in O�. Note that, if I�+1 is any interval
in O�+1, there is a collection of intervals I2, . . . , I� with Ij ⊂ Oj which satisfy
I1 → I2 → . . . → I� → I�+1.

Now the O� form an increasing union of intervals. Since there are only
finitely many xj , it follows that there is an � for which O�+1 = O�. For
this � we must have that O� contains all intervals of the form [xj , xj+1], for
otherwise x would have period less than n.

We claim that there is at least one interval [xj, xj+1] different from I1 in
some Ok whose image covers I1. This follows since there are more xi’s on
one side of I1 than on the other (n is odd.) Hence some xi’s must change
sides under the action of f , and some must not. Consequently, there is at
least one interval whose image covers I1.

Now let us consider chains of intervals I1 → I2 → . . . → Ik → I1 where
each I� is of the form [xj , xj+1] for some j and where I2 �= I1. We do not
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assume that I� ⊂ O�. By the above observations, there is at least one such
chain. Let us choose the smallest k for which this happens, i.e., I1 → I2 →
. . . → Ik → I1 is the shortest path from I1 to I1 except, of course, I1 → I1.
We therefore find a diagram as in Fig. 10.3.

Fig. 10.3.

Now, if k < n − 1, then one of the loops I1 → I2 → . . . → Ik → I1 or
I1 → . . . → Ik → I1 → I1 gives a fixed point of fm with m odd and m < n.
This point must have prime period < k since I1 ∩ I2 consists of only one
point, and that point has period > m. Therefore k = n − 1.

Since k is the smallest integer that works, we cannot have I� → Ij for
any j > � + 1. It follows that the orbit of x must be ordered in R in one of
two possible ways, as depicted in Fig. 10.4.

It follows that we can extend the diagram depicted in Fig. 10.3 to that
shown in Fig. 10.5. Sarkovskii’s Theorem for the special case of n odd is now
immediate. Periods larger than n are given by cycles of the form I1 → . . . →
In−1 → I1 → . . . I1. The smaller even periods are given by cycles of the form

In−1 → In−2 → In−1,

In−1 → In−4 → In−3 → In−2 → In−1

and so forth. For the case of n even, we first note that f must have a periodic
point of period 2. This follows from the above arguments provided we can
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Fig. 10.4. One possible ordering of the Ij .
The other is the mirror image.

guarantee that some xi’s change sides under f and some do not (use the facts
that In−1 ← In−2 and In−1 → In−2). If this is not the case, then all of the
xi’s must change sides and so f [x1, xi] ⊃ [xi+1, xn] and f [xi+1, xN ] ⊃ [x1, xi].
But then, our observation above produces a period 2 point in [x1, xi].

Fig. 10.5.

The Theorem now will be proved for n = 2m as follows. Let k = 2� with
� < m. Consider g = fk/2. By assumption, g has a periodic point of period
2m−�+1. Therefore, g has a point which has period 2. This point has period
2� for f .The final case is now n = p · 2m where p is odd. This case can be
reduced to the previous two. We leave these reductions as Exercises.

q.e.d.
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We now turn to the converse of Sarkovskii’s Theorem. To produce a map
with period 5 and no period 3, consider a map f : [1, 5] → [1, 5] which satisfies

f(1) = 3
f(3) = 4
f(4) = 2
f(2) = 5
f(5) = 1

so that 1 is periodic of period 5. Suppose that f is linear between these
integers, i.e., the graph is as shown in Fig. 10.6.

Fig. 10.6.

It is easy to check that

f3[1, 2] = [2, 5]

f3[2, 3] = [3, 5]

f3[4, 5] = [1, 4]

so f3 has no fixed points in any of these intervals. It is true that f3[3, 4] =
[1, 5] so that f3 has at least one fixed point in [3, 4]. But we claim that this
point is unique, and therefore must be the fixed point for f , not the period
3 point. Indeed, f : [3, 4] → [2, 4] is monotonically decreasing, as is f : [2, 4] →
[2, 5] and f : [2, 5] → [1, 5]. Therefore f3 is monotonically decreasing on [3, 4]
and the fixed point is unique.
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Fig. 10.7.

The graph, shown in Fig. 10.7, produces period 7 but not period 5.
This process is easily generalized to give the first portion of the Sarkovskii

ordering. For the even periods, we will introduce a trick. Let f : I → I be
continuous. We will construct a new function F , the double of f , whose
periodic points will have exactly twice the period of those of f , plus one
additional fixed point. The procedure for producing F is as follows. Divide
the interval I into thirds. Compress the graph of f into the upper left corner
of I × I as shown on Fig. 10.8.a. The rest of the graph is filled in as in
Fig. 10.8.b.

Fig. 10.8. Fig. 10.8.a. gives the graph of f(x) while Fig. 10.8.b.
gives the graph of its double, F (x).
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The map F is piecewise linear on [1/3, 2/3] and [2/3, 1]. Moreover,
F (2

3) = 0, F (1) = 1
3 , and F is continuous.

Note that F maps [0, 1
3 ] into [23 , 1] and vice versa. Also note that if

x ∈ [13 , 2
3 ] and x is not the fixed point, then there exists n so that F n(x) ∈

[0, 1
3 ]∪ [23 , 1]. This implies that there are no other F -periodic points in (1

3 , 2
3).

Exercise 7 shows that if x is a periodic point of period n for f , then x/3 is
periodic of period 2n for F . On the other hand, if y is F -periodic then either
y or F (y) lies in [0, 1

3 ] and Exercise 9 shows that 3y or 3F (y) is f -periodic.
Thus to produce a map with period 10 but not period 6, we need only double
the graph of a function with period 5 but not period 3.

As a final remark, we must emphasize that Sarkovskii’s Theorem is very
definitely only a one-dimensional result. There is no higher dimensional
analogue of this result. In fact, the Theorem does not even hold on the
circle. For example, the map which rotates all points on the circle by 120o

makes all points periodic with period three. There are no other periods
whatsoever.

Exercises

1. Suppose A0, A1, . . . , An are closed intervals and f(Ai) ⊃ Ai+1 for i =
0, . . . , n − 1. Prove that there exists a point x ∈ A0 such that f i(x) ∈ Ai for
each i.

2. Prove that if f has period p · 2m with p odd, then f has period q · 2m

with q odd, q > p.

3. Prove that if f has period p·2m with p odd, then f has period 2�, � ≤ m.

4. Prove that if f has period p · 2m with p odd, then f has period q · 2m

with q even.

5. Construct a piecewise linear map with period 2n + 1.

6. Give a formula for F (x) in terms of f(x), where F (x) is the double of
f(x).

7. Prove that F (x), the double of f(x), has a periodic point of period 2n
at x/3 iff x has f -period n.

8. Construct a map that has periodic points of period 2j for j < � but not
period 2�.

9. Prove that if F (x), the double of f(x), has a periodic point p that is not
fixed, then either p or F (p) lies in [0, 1

3 ]. Prove that, in this case, either 3p
or 3F (p) is a periodic point for f .
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§1.11 THE SCHWARZIAN DERIVATIVE

In this section, we describe a tool first introduced into the study of one-
dimensional dynamical systems by Singer in 1978. This is the Schwarzian
derivative. Actually, the Schwarzian derivative plays an important role in
complex analysis, where it is used as a criterion for a complex function to
be a linear fractional transformation. In one-dimensional dynamics, the
Schwarzian derivative is a valuable tool for a number of reasons. In this
section, we will show how it may be used to establish an upper bound on
the number of attracting periodic orbits that certain maps may have. We
will also use it to prove that other maps have an entire interval on which the
map is chaotic. Later, in §§ 17–19, the Schwarzian derivative will play an
important role in our discussion of how families of maps like the quadratic
family make the transition from simple to chaotic dynamics.

Definition 11.1 The Schwarzian derivative of a function f at x is

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2
.

For example, if Fµ(x) = µx(1−x) is our quadratic model mapping, then
SFµ(x) = −6/(1 − 2x)2, so that SFµ(x) < 0 for all x (even x = 1/2, the
critical point, at which SFµ(x) = −∞).

For us, functions with negative Schwarzian derivative will be most im-
portant. Besides the quadratic map, many other functions have negative
Schwarzian derivatives. For example, S(ex) = −1/2 and S(sinx) = −1 −
3
2(tan2 x) < 0. Many polynomials have this property, as the following propo-
sition shows.

Proposition 11.2. Let P (x) be a polynomial. If all of the roots of P ′(x)
are real and distinct, then SP < 0.

Proof. Suppose

P ′(x) =
N∏

i=1
(x − ai)
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with the ai distinct and real. Then we have

P ′′(x) =
N∑

j=1

P ′(x)
x − aj

=
N∑

j=1

∏N
i=1(x − ai)
x − aj

P ′′′(x) =
N∑

j=1

N∑
k=1
k �=j

∏N
i=1(x − ai)

(x − aj)(x − ak)
.

Hence we have

SP (x) =
∑
j �=k

1
(x − aj)(x − ak)

− 3
2

( N∑
j=1

1
x − aj

)2

= −1
2

N∑
j=1

( 1
x − aj

)2
−
( N∑

j=1

1
x − aj

)2
< 0.

q.e.d.
One of the most important properties of functions which have negative

Schwarzian derivative is the fact that this property is preserved under com-
position.

Proposition 11.3. Suppose Sf < 0 and Sg < 0. Then S(f ◦ g) < 0.

Proof. Using the chain rule, one computes that

(f ◦ g)′′(x) = f ′′(g(x)) · (g′(x))2 + f ′(g(x)) · g′′(x)

and
(f ◦ g)′′′(x) = f ′′′(g(x)) · (g′(x))3 + 3f ′′(g(x)) · g′′(x) · g′(x)

+f ′(g(x)) · g′′′(x).

It follows that

S(f ◦ g)(x) = Sf(g(x)) · (g′(x))2 + Sg(x)

so that S(f ◦ g)(x) < 0.
q.e.d.

Of primary importance for us is the immediate consequence that, if Sf <
0, then Sfn < 0 for all n > 1. The assumption that Sf < 0 has surprising
implications for the dynamics of a one-dimensional map. One of the major
results of this section is
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Theorem 11.4. Suppose Sf < 0 ( Sf(x) = −∞ is allowed.) Suppose f has
n critical points. Then f has at most n + 2 attracting periodic orbits.

Remarks.

1. The quadratic function Fµ(x) = µx(1−x) has one critical point (x = 1/2).
Hence, for each µ there exists at most three attracting periodic orbits. There
may, of course, be none, as is the case for µ > 2 +

√
5. Later we will see

that the number of attracting periodic orbits can be reduced to at most one.
Since, for large µ, the map Fµ has infinitely many periodic orbits, it is indeed
a surprise that at most one may be attracting.

2. This presents a computational dilemma. Suppose Fµ has an attracting
periodic cycle of period three. By Sarkovskii’s Theorem, Fµ must have pe-
riodic points of all other periods, but none of them can be attracting. On
a computer, only attracting periodic points are “visible,” so this raises the
question: where are all of the other periodic points in this case? We will
return to this question in §1.13.
3. The proofs below extend to non-hyperbolic periodic points as well. Con-
sequently, the quadratic map Fµ has at most one periodic orbit which is not
repelling.

To prove Theorem 11.4, we first need several lemmas.

Lemma 11.5. If Sf < 0, then f ′(x) cannot have a positive local minimum
or a negative local maximum.

Proof. Suppose x0 is a critical point of f ′(x), i.e., f ′′(x0) = 0. Since Sf(x0) <
0, we have f ′′′(x0)/f ′(x0) < 0 so that f ′′′(x0) and f ′(x0) have opposite signs.

q.e.d.
It follows that, between any two successive critical points of f ′, the graph

of f ′(x) must cross the x-axis. In particular, there must be a critical point
for f between these two points.

Lemma 11.6. If f(x) has finitely many critical points, then so does fm(x).

Proof. For any c, f−1(c) is a finite set of points, since, between any two
preimages of c, there must be at least one critical point of f . It follows easily
that f−m(c) = {x|fm(x) = c} is also a finite set.

Now suppose (fm)′(x) = 0. By the Chain Rule, we have

(fm)′(x) =
m−1∏
i=0

f ′(f i(x)).
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Hence for some i, 0 ≤ i ≤ m − 1, f i(x) is a critical point of f . Therefore the
set of critical points of fm is given by the union of inverse images of order
less than m of the critical point set of f together with their orbits. By the
above observation, this is a finite set of points.

q.e.d.

Lemma 11.7. Suppose f(x) has finitely many critical points and Sf < 0.
Then f has only finitely many periodic points of period m for any integer m.

Proof. Let g = fm. Then periodic points of period m for f are fixed points
for g. By Proposition 11.3, Sg < 0.

Suppose g has infinitely many fixed points. By the Mean Value Theorem,
there are infinitely many points at which g′(x) = 1. Between any three
successive points for which g′(x) = 1, there must be a point for which g′ < 1.
Indeed, g′(x) is not identically equal to one on an interval, for then Sg = 0
contradicting the fact that Sg < 0. Furthermore, by Lemma 11.5, g′ cannot
have a positive local minimum between these three points. Hence there must
be points for which g′ < 0. Consequently, there are points for which g′ = 0.
But this implies that g has infinitely many critical points. This contradicts
Lemma 11.6 and completes the proof.

q.e.d.
We now complete the proof of Theorem 11.4. Let p be an attracting

periodic point of period m for f . Let W (p) be the maximal interval about p
in which all points tend asymptotically to p under fm, i.e., W (p) is the con-
nected component of {x|fmj(x) → p as j → ∞} which contains p. Clearly,
W (p) is an open interval, and fm(W (p)) ⊂ W (p).

Let us suppose for the moment that p is fixed. Since f(W (p)) ⊂ W (p)
and W (p) is maximal, it follows that either f preserves the endpoints of
W (p) = (�, r), or one or both of � and r are infinite. In the finite case, there
are three possibilities

1. f(�) = � and f(r) = r;
2. f(�) = r and f(r) = �;
3. f(�) = f(r).

If f(�) = � and f(r) = r, then the graph of f shows that there exists a, b
satisfying � < a < p < b < r and f ′(a) = f ′(b) = 1. Since f ′(p) < 1 and f ′

cannot have a positive local minimum (by Lemma 11.5), it follows that there
exists a critical point in the interval (a, b). The second case follows similarly
by considering f2. In case 3, f must have a minimum or maximum between
� and r, so that there is a critical point in W (p) in this case as well. In the
case of � and/or r infinite, this proof fails. However, these cases add at most
two stable fixed points.
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If p is periodic, the same arguments produce a critical point for fm in
W (p). One point on the orbit of this critical point must in fact be a critical
point for f because of the chain rule.

q.e.d.
The above Theorem may be extended to the case of non-hyperbolic pe-

riodic points. Indeed, more can be said. If f(x) has a fixed point c with
multiplier ±1, and Sf < 0, then c must attract points from at least one side,
and, as above, there must be a critical point in W (c).

To see this, we first assume that f ′(c) = 1 (otherwise consider f2). By
Lemma 11.7, f has only finitely many fixed points. Hence there is an interval
about c in which f has no other fixed points.

Suppose that c is a “repelling” fixed point, i.e., for x < c and near c,
f(x) < x and for y > c, f(y) > y. Clearly, f ′ has a local minimum value of
1 in this case. This contradicts Lemma 11.5 and shows that either f(x) > x
for a < x < c or f(x) < x for c < x < b. Graphical analysis then shows that
c is attracting from at least one side. See Fig. 11.1.

Fig. 11.1. g(x) < x for a < x < c.

The above proof shows that periodic points with bounded stable sets
must attract a critical point. If the stable sets are unbounded, this need not
be the case, as the following examples show.
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Example 11.8. Let A(x) = λ arctan(x) with λ > 1.

SA(x) = −2/(1 + x2)2 < 0.

The graph of A shows that there are two attracting fixed points with un-
bounded stable sets but no critical points. See Fig. 11.2.

Fig. 11.2. The graph and phase portrait of
A(x) = λ arctanx with λ > 1.

Example 11.9. Let E(x) = ex−1. E has a single fixed point at p = 1 which
weakly attracts all points to the left but repels all points to the right. Again,
E has no critical points. See Fig. 11.3.

This example will play a prominent role in the next section, when we
discuss bifurcation theory.

For our quadratic map, the above theorem implies that there exists at
most three attracting periodic orbits. However, since we know the behavior
of these maps near ∞, we can say more.

Corollary 11.10. Suppose Fµ(x) = µx(1 − x). Then there exists at most
one attracting periodic orbit for each µ.

Proof. We have shown that SFµ < 0 and that, if |x| is sufficiently large, then
|Fn

µ (x)| → ∞. Hence there are no attracting periodic points with infinite
stable sets.

q.e.d.
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Fig. 11.3. The graph and phase portrait of
E(x) = ex−1.

There may, of course, be no attracting periodic orbits, as in the case of
µ > 2 +

√
5 or µ = 4.

Thus, when a map has negative Schwarzian derivative, the orbits of the
critical points play an important role in determining the dynamics. Later,
when we discuss the kneading theory, we will see that the orbits of critical
points control all of the dynamics. For now, let us return to the quadratic
map F4(x) = 4x(1 − x). Recall that, in Example 8.9, we proved that F4 is
chaotic on the unit interval. Since the critical point for this map is mapped
onto a repelling fixed point, we know from the above considerations that F4
cannot have an attracting periodic orbit. But the fact that SF4 < 0 actually
gives much more: using this fact, we may demonstrate that repelling periodic
points are dense in I. Unlike the very special proof of this fact given in
Example 8.9, this proof is considerably more general and applies to a wide
variety of maps (see Exercises 1-2). We will use these ideas again much later
when we discuss Julia sets of complex analytic dynamical systems.

Recall that F4 has a repelling fixed point at p = 3/4. Let p̂ = 1/4.
Clearly, F4(p̂) = p. Let J denote the half-open, half-closed interval [p̂, p). We
will describe a “first return map” R on the interior of J −{1/2}. Intuitively,
R(x) = F n

4 (x) where n is the smallest integer for which F n
4 (x) ∈ J . To

define R precisely, we first note that F4 maps J onto the interval [3/4, 1].
That is, if x ∈ J, F4(x) �∈ J . Now F4 maps [3/4, 1] homeomorphically onto
the interval [0, 3/4], so certain points in J are mapped back into J by F 2

4 .
Indeed, a glance at Fig. 11.4 shows that there are two intervals I2 and Î2 in
J which are mapped homeomorphically onto J by F 2

4 . Note that both I2
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Fig. 11.4.

and Î2 are half-open and half-closed intervals. We will define R(x) = F 2
4 (x)

for x ∈ I2 ∪ Î2.
If x ∈ J but x �∈ I2 ∪ Î2, then F 2

4 (x) ∈ [0, 1
4). Since F4 is increasing on

[0, 1/4) and F [0, 1/4) = [0, 3/4), it follows that as long as x �= 1/2, the orbit
of x eventually returns to J . More precisely, if x ∈ J − {1/2} there exists a
least integer n ≥ 2 for which Fn

4 (x) ∈ J . Let φ(x) be this smallest integer;
hence φ gives the “time” of first return to J . Note that φ = 2 on I2 ∪ Î2.
More generally, we define

In = {x ∈ (1/2, p)|φ(x) = n}
În = {x ∈ [p̂, 1/2)|φ(x) = n}.

It is easy to check that In and În are half-open, half-closed intervals
and that Fn

4 maps In and În homeomorphically onto J . We therefore define
R:J − {1/2} → J by

R(x) = F
φ(x)
4 (x).

Fig. 11.5 shows the graph of R. We emphasize that R is not defined at 1
2 and

has infinitely many points of discontinuity, Nevertheless, a good understand-
ing of the return map provides all of the information that we need about
F4.

The fact that each Fn
4 has negative Schwarzian derivative allows us to

observe that if K is any interval on which (Fn
4 )′ �= 0, then the minimum
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Fig. 11.5.

value of |(Fn
4 )′(x)| occurs at one of the endpoints of K. This then allows us

to prove the following fundamental result.

Proposition 11.11. |R′(x)| > 1 for each x ∈ J .

Proof. We work in the right hand intervals In; the result for În follows by
symmetry. Let Ik = [�k, rk). Let

Wk =
∞⋃

n>k

In.

Wk is an open interval bounded by 1/2 and �k. We must show that (F k
4 )′(x) >

1 for �k ≤ x ≤ rk. By the above observation, since (F k
4 )′ �= 0 on Ik, it suffices

to verify this condition at �k and rk.
Now F k

4 maps Ik ∪ Wk homeomorphically onto (0, p) and Ik onto (p̂, p).
Since the length of Ik is less than 1/4, it follows that there exists xk ∈ Ik

with (F k
4 )′(xk) > 1. Now F k

4 must map Wk onto (0, p̂). Since the length
of Wk is less than 1/4 as well, it follows that there exists x′

k ∈ Wk with
(F k

4 )′(x′
k) > 1. Since (F k

4 )′ cannot have a positive local minimum, it follows
that (F k

4 )′(�k) > 1, since x′
k < �k < xk.
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To show that (F k
4 )′(rk) > 1 as well, we note that

(F k
4 )′(rk) = F ′

4(F
k−1
4 (rk)) · (F k−1

4 )′(rk)

= F ′
4(p̂) · (F k−1

4 )′(�k−1)
> 1

since both terms in this product are > 1. This completes the proof.
q.e.d.

To prove that repelling points are dense, let U be any interval in I. We
must produce a repelling periodic point in U . To do this we will find an
n > 0 such that F n

4 (U) is an interval containing U . The result then follows.
Since |F ′

4(x)| > 1 if x �∈ J , there is an n > 0 and a subinterval U0 ⊂ U
with V = F n

4 (U0) ⊂ J . Now R expands the lengths of intervals in J by
Proposition 11.11. Hence there is a k > 0 and a subinterval V0 ⊂ V such
that Rk(V0) contains a discontinuity point of R. Hence there is an m > 0
such that p ∈ Fm

4 (V0). By graphical analysis, any neighborhood of p is
eventually expanded under iteration so that it covers I. In particular, there
is k > 0 for which Fm+k

4 (V0) covers I. The result then follows easily.

Remarks.
1. The above argument can be used to prove both sensitive dependence on
initial conditions and topological transitivity as well. See Exercise 4.
2. To apply this method to other examples, we note that the crucial prop-
erty that was used was that F k

4 expanded both Wk and Ik over (0, p̂) and
J respectively. This can often be verified by direct calculation or with a
computer.

Example 11.12. Similar methods prove that S(x) = 2π sinx is chaotic on
the interval [0, 2π], since sinx has negative Schwarzian derivative.

Example 11.13. There exists a c < 0 for which the quadratic map Qc(x) =
x2 +c has the property that Q3

c(0) is a repelling fixed point −p. Numerically,
c ≈ −1.543689 and p ≈ 0.839268 . . . . The graph of Qc is depicted in Fig. 11.6.

One may check that Qc has a repelling periodic point of period 2 at
q ≈ .39039 . . . . The graph of Q2

c on the interval [−p, p] is shown in Fig. 11.7.
Note how Q2

c resembles F4 on this interval and that S(Qc) < 0. One may
thus use the techniques of this section to prove that Qc is chaotic on [−p, p].
We will return to this example much later when we take up complex analytic
dynamics.
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Fig. 11.6.

Fig. 11.7.

As a remark, the techniques introduced in this section allow us to prove
more than just the fact that the dynamics of a map are chaotic. Since re-
pelling periodic points are dense, it follows that there can never be an interval
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which wanders around under iteration of the map and never reintersects it-
self. Such an interval is called a wandering interval . Thus we may exploit the
fact that a map has negative Schwarzian derivative to rule out the possibility
of wandering intervals in certain cases. As we shall see in §1.14, nontrivial
wandering intervals may exist.

Exercises

1. Prove that the map S(x) = 2π sinx is chaotic on the interval [0, 2π].
2. Let Qc(x) = x2 + c where c ≈ −1.543689 as discussed in Example 11.13.
Prove that there is an interval on which this map is chaotic.
3. Give an example of a polynomial with real coefficients which does not
have negative Schwarzian derivative.
4. Use the return map R to prove that F4(x) = 4x(1 − x) has sensitive
dependence on initial conditions and is topologically transitive.

§1.12 BIFURCATION THEORY

Bifurcation means a division in two, a splitting apart, a change. In
dynamical systems, the object of bifurcation theory is to study the changes
that maps undergo as parameters change. These changes often involve the
periodic point structure, but may also involve other changes as well. In
this section, we will consider one-parameter families of real-valued functions
that depend smoothly on the parameter. More precisely, we will consider
functions of two variables of the form

G(x, λ) = fλ(x)

where, for fixed λ, fλ(x) is a C∞ function of the variable x. We will assume
that G depends smoothly on λ as well. Examples include our friend, the
quadratic family, Fµ(x) = µx(1 − x), as well as

1. Eλ(x) = λex

2. Sλ(x) = λ sin(x)
3. Qc(x) = x2 + c

and many others. For these and other families, our goal will be to understand
how and when the periodic point structure of the family changes, i.e., the
bifurcations that the family undergoes. We begin with some simple examples.
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Example 12.1. (The Saddle-Node or Tangent Bifurcation.) Consider the
family Eλ(x) = λex where λ > 0. This family experiences a bifurcation when
λ = 1/e. To see this we note that the graph of f changes when λ = 1/e as
depicted in Fig. 12.1.

Fig. 12.1. The graphs of Eλ(x) = λex where a. λ > 1/e,
b. λ = 1/e, and c. 0 < λ < 1/e.

When λ > 1/e, the graph of Eλ does not meet the diagonal, so Eλ has
no fixed points. When λ = 1/e, the graph meets the diagonal tangentially
at x = 1, y = 1. For λ < 1/e, the graph meets the diagonal at two points,
at q with E′

λ(q) < 1 and at p with E′
λ(p) > 1. Hence Eλ has two fixed points

for λ < 1/e. So, as the parameter decreases, two fixed points are born as λ
passes through 1/e. Using graphical analysis, one can derive the entire phase
portrait for each Eλ. We leave the following observations as an exercise.

1. When λ > 1/e, En
λ(x) → ∞ for all x.

2. When λ = 1/e, Eλ(1) = 1. If x < 1, En
λ(x) → 1. If x > 1, En

λ(x) →
∞.
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3. When 0 < λ < 1/e, Eλ(q) = q and Eλ(p) = p. If x < p, En
λ(x) → q;

if x > p, En
λ(x) → ∞.

The phase portraits of Eλ are sketched in Fig. 12.2. This is the typical
change in the phase portrait which accompanies the saddle-node or tangent
bifurcation. For later use, we note that, at the bifurcation (λ = 1/e, x = 1),
we have E ′

λ(1) = 1 and E′′
λ(1) = 1.

Fig. 12.2. The phase portraits of Eλ(x) = λex when
a. λ > 1/e, b. λ = 1/e, and c. 0 < λ < 1/e.

This bifurcation can be described graphically in a bifurcation diagram in
which we plot the location of fixed (or periodic) points versus the parameter.
See Fig. 12.3. Each vertical slice of the bifurcation diagram gives the location
of the fixed points of Eλ on the real line.

Example 12.2. (The Period-Doubling Bifurcation.) We again consider the
family Eλ(x) = λex, this time with λ < 0. The graphs of Eλ are given
in Fig. 12.4 in three important cases. When λ = −e, Eλ(−1) = −1 and
E′

λ(−1) = −1, so −1 is a non-hyperbolic fixed point for Eλ. When λ > −e,
one may check (Exercise 3) that the fixed point for Eλ is attracting; when
λ < −e, it is repelling. Hence the fixed point for Eλ undergoes a change in
the nature of the nearby dynamics when λ = −e. This is not all that occurs,
however. Consider the graphs of E2

λ. Using calculus, it is easy to see that
E2

λ is an increasing function that is concave up if Eλ(x) > −1, and concave
down if Eλ(x) < −1. See Fig. 12.5.

Thus E2
λ has 2 new fixed points at q1 and q2 when λ decreases below −e.

These must in fact be periodic points of period 2, since we know that Eλ has
a unique fixed point. Dynamically, this period-doubling bifurcation involves

1. a change from an attracting to a repelling fixed point, together with
2. the birth of a new period two orbit.
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Fig. 12.3. The bifurcation diagram for Eλ(x) = λex;
x is plotted versus λ.

In the above example, we note that, as the fixed point loses its “at-
tractiveness,” the period two orbit acquires it. Also, for later use, note
that, at the bifurcation point (λ = −e, x = −1), we have (E2

λ)′(−1) =
1, (E2

λ)′′(−1) = 0 and (E2
λ)′′′(−1) �= 0.

Fig. 12.6 gives the bifurcation diagram for the period-doubling bifurca-
tion. A similar period-doubling bifurcation occurs in the quadratic family.
See §1.4. For maps of the real line, these two bifurcations turn out to be
the most common types of bifurcations – they are the ones that occur in a
typical family of maps. There are other, atypical bifurcations, however.

Example 12.3. Let Sλ(x) = λ sinx. Note that Sλ(0) = 0 for all λ and that
S′

λ(0) = 1 when λ = 1. Graphical analysis shows that the phase portrait of
Sλ is given as in Fig. 12.7 (Exercise 5) for |x| < π. The origin gives birth to
two new fixed points in this case and changes from attracting to repelling as
λ increases through 1. The reason that this bifurcation is atypical is that,
when λ = 1, we have both S ′

λ(0) = 1 and S′′
λ(0) = 0. Indeed, Sλ is an

odd function and hence it is symmetric near x = 0. Usually, a function has
non-zero second derivative when its first derivative equals one and symmetry
is not present.

Example 12.4. Consider again the quadratic family Fµ(x) = µx(1 − x).
When µ = 1, Fµ has a unique fixed point, but for all other µ �= 0, there are
two fixed points (one of which may be negative). The phase portrait is given
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Fig. 12.4. The graphs of Eλ(x) = λex where a. −e < λ < 0,
b. λ = −e, and c. λ < −e.

in Fig. 12.8. This bifurcation is also atypical since

d

dµ
Fµ(0)

∣∣∣∣
µ=1

= 0.

Usually we require that the bifurcations occur with non-zero “speed” in the
parameter variable.

The above examples indicate that bifurcations occur near non-hyperbolic
fixed and periodic points. This is indeed the only place where bifurcations
of fixed points occur, as the following Theorem demonstrates.

Theorem 12.5. Let fλ be a one-parameter family of functions and suppose
that fλ0(x0) = x0 and f ′

λ0
(x0) �= 1. Then there are intervals I about x0

and N about λ0 and a smooth function p:N → I such that p(λ0) = x0 and
fλ(p(λ)) = p(λ). Moreover, fλ has no other fixed points in I.
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Fig. 12.5. The graphs of E2
λ(x) when a. −e < λ < 0,

b. λ = −e, and c. λ < −e.

Proof. Consider the function defined by G(x, λ) = fλ(x)−x. By hypothesis,
G(x0, λ0) = 0 and

∂G

∂x
(x0, λ0) = f ′

λ0
(x0) − 1 �= 0.

By the Implicit Function Theorem, there are intervals I about x0 and N
about λ0, and a smooth function p:N → I such that p(λ0) = x0 and
G(p(λ), λ) = 0 for all λ ∈ N . Moreover, G(x, λ) �= 0 unless x = p(λ).
This concludes the proof.

Remarks.
1. The content of the theorem is best understood by examining the graph
of fλ. Since fλ0 meets the line y = x at an angle at (x0, x0), nearby graphs
fλ must have the same property. See Fig. 12.9. Hence there is one and only
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Fig. 12.6. The bifurcation diagram for Eλ(x) = λex;
x is plotted versus λ.

Fig. 12.7. The phase portraits for Sλ(x) = λ sinx when
a. 0 < λ < 1, b. λ = 1, and c. 1 < λ < π/2.

one fixed point near x0 for λ sufficiently near λ0. The associated bifurcation
diagram is shown in Fig. 12.10.
2. For theoretical simplicity, it is often convenient to assume that the fixed
point set of fλ is stationary as λ is varied. The previous theorem allows
us to make this assumption. Suppose that fλ is as in Theorem 12.5 and
fλ(p(λ)) = p(λ) as in the theorem. Consider the new function

gλ(z) = fλ(z + p(λ)) − p(λ).

Clearly, gλ(0) = fλ(p(λ))−p(λ) = 0 for all λ, so 0 is always fixed. Moreover,
gλ is topologically conjugate to fλ via the simple map hλ(x) = x − p(λ).



§1.12 BIFURCATION THEORY 87

Fig. 12.8. The phase portraits for Fµ(x) = µx(1 − x) when
a. µ < 1, b. µ = 1, and c. 1 < µ < 3.

Fig. 12.9.

Hence the dynamics of fλ and gλ agree, but gλ is simpler to handle since its
fixed point remains stationary at 0 as λ varies.

3. The above theorem (as well as all that follow) obviously holds for periodic
points by replacing f with fn.

We now turn to the general setting of bifurcation theory.
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Fig. 12.10. The bifurcation diagram when f ′
λ0

(x0) �= 1.

Theorem 12.6. (The saddle-node bifurcation) Suppose that
1. fλ0(0) = 0
2. f ′

λ0
(0) = 1

3. f ′′
λ0

(0) �= 0

4.
∂fλ

∂λ

∣∣∣∣
λ=λ0

(0) �= 0.

Then there exists an interval I about 0 and a smooth function p: I → R
satisfying p(0) = λ0 and such that

fp(x)(x) = x.

Moreover, p′(0) = 0 and p′′(0) �= 0.

Remark. The signs of f ′′
λ0

(0) and

∂fλ

∂λ

∣∣∣∣
λ=λ0

determine the “direction” of the bifurcation; if they have opposite signs, then
the bifurcation diagram is as in Fig. 12.11.

Proof. Define G(x, λ) = fλ(x) − x. Note that G(x, λ) = 0 implies that fλ

has a fixed point at x. We will apply the Implicit Function Theorem to G.
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Fig. 12.11. The bifurcation diagram near a saddle-node bifurcation.
The curve λ = p(x) gives the fixed points for fλ.

Note that G(0, λ0) = 0 and that

∂G

∂λ
(0, λ0) =

∂fλ

∂λ

∣∣∣∣
λ=λ0

(0) �= 0.

Hence there exists a smooth function p(x) satisfying G(x, p(x)) = 0. From
the chain rule, we have

∂G

∂x
+

∂G

∂λ
p′(x) = 0.

Therefore

p′(x) =
− ∂G

∂x
(x, p(x))

∂G

∂λ
(x, p(x))

.

Differentiating this expression and using the above gives

p′′(0) =
− ∂2G

∂x2 (0)
∂G

∂λ

∣∣∣∣
λ=λ0

(0)
(

∂G

∂λ

)2

= −
f ′′
λ0

(0)
∂f

∂λ

∣∣∣∣
λ=λ0

(0)
.

This completes the proof.
q.e.d.
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Theorem 12.7. (Period-doubling bifurcation) Suppose
1. fλ(0) = 0 for all λ in an interval about λ0.
2. f ′

λ0
(0) = −1.

3.
∂(f2

λ)′

∂λ

∣∣∣∣
λ=λ0

(0) �= 0.

Then there is an interval I about 0 and a function p: I → R such that

fp(x)(x) �= x

but

f2
p(x)(x) = x.

Proof. For this proof we define G(x, λ) = f 2
λ(x) − x. We cannot apply the

Implicit Function Theorem directly because

∂G

∂λ
(0, λ0) = 0.

Thus we set

H(x, λ) =




G(x, λ)
x

x �= 0

∂G

∂x
(0, λ) x = 0.

One checks easily that H is smooth and satisfies

∂H

∂x
(0, λ0) =

1
2

∂2G

∂x2 (0, λ0)

∂2H

∂x2 (0, λ0) =
1
3

∂3G

∂x3 (0, λ0).

We now apply the Implicit Function Theorem to H. Note that

H(0, λ0) =
∂G

∂x
(0, λ0)

= (f2
λ0

)′(0) − 1

= f ′
λ0

(0) · f ′
λ(0) − 1

= 0.
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We have by assumption that

∂H

∂λ
(0, λ0) =

∂

∂λ

∣∣∣∣
λ=λ0

(
(f2

λ)′(0) − 1
)

=
∂(f2

λ)′

∂λ
(0)

�= 0.

Hence there is a smooth function p(x) defined on a neighborhood of 0 and
satisfying p(0) = λ0 and H(x, p(x)) = 0. In particular,

1
x

G(x, p(x)) = 0

for x �= 0 and it follows that x is a period two point for fp(x). Note that x is
not fixed by fp(x) because of Theorem 12.5.

As above, we compute

p′(0) =
−∂H

∂x
(0, λ0)

∂H

∂λ
(0, λ0)

= 0

since
(f2

λ0
)′′(0) = f ′′

λ0
(0) · (f ′

λ0
(0))2 + f ′′

λ0
(0) · f ′

λ0
(0) = 0

where we have used f ′
λ0

(0) = −1. This completes the proof.
q.e.d.

We may get more information about the configuration of the curve of
periodic points as follows. Using the notation of the previous proof, one
computes

p′′(0) =
−∂2H

∂x2 (0, λ0) · ∂H

∂λ
(0, λ0)(

∂H

∂λ
(0, λ0)

)2

=
2
3f ′′′

λ0
(0) +

(
f ′′
λ0

(0)
)2

∂
∂λ

∣∣∣∣
λ=λ0

(f2
λ)′(0)

.

Note that the numerator of this expression is precisely (−2/3)Sfλ0(0) since
f ′
λ0

(0) = −1. Hence we have
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Fig. 12.12. The map f2
λ does not have negative Schwarzian derivative,

since (f2
λ)′ has a positive local minimum between a and b.

Corollary 12.8. Suppose in addition to the hypothesis of Theorem 12.7 that
Sfλ0(0) �= 0. Then the curve λ = p(x) satisfies p′′(0) �= 0.

Remarks.

1. This means that either λ = p(x) is concave in the direction shown in
Fig. 12.12 or in the opposite direction.
2. If we assume that Sfλ < 0 for all λ near λ0, then the family fλ cannot have
a “reverse” period-doubling bifurcation at λ0. By this we mean a bifurcation
of the following type. If λ < λ0, fλ has a (locally) unique repelling fixed
point. When λ = λ0, fλ has a unique fixed point with multiplier −1. When
λ > λ0, fλ has a unique attracting fixed point with a repelling periodic point
of period two. Figure 12.12 shows why this cannot happen, as the graph is
impossible by Lemma 11.5.

Exercises

1. Identify the bifurcations and discuss the phase portraits before and after
the bifurcations which occur in the following families of maps at the indicated
parameter values.

a. Fµ(x) = µx(1 − x), µ = 3.
b. Fλ(x) = λx − x3, λ = 1.
c. Fλ(x) = λx − x3, λ = −1.
d. Qc(x) = x2 + c, c = −3

4 .
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e. Aλ(x) = λ arctan(x), λ = −1.
f. Hλ(x) = λ sinh(x), λ = 1.

2. Let λ > 0. Prove that the phase portraits for Eλ are as given in Fig. 12.2.

3. Let λ < 0. Prove that Eλ(x) has a unique fixed point that is attracting
if λ > −e and repelling if λ < −e.

4. Prove that E2
λ is concave up for x such that E′

λ(x) > −1, and concave
down if E′

λ(x) < −1.

5. Discuss the phase portrait and the bifurcation diagram for Sλ(x) =
λ sinx for |x| < π, 0 < λ ≤ π/2.

6. Consider the quadratic family Qλ(x) = x2 + λ. Where does this family
have a saddle-node bifurcation? A period-doubling bifurcation? Describe
the phase portraits and the bifurcation diagrams nearby in each case.

7. Using Sarkovskii’s Theorem and graphical analysis, describe the phase
portraits of Fµ(x) = µx(1 − x) as µ increases through 3. Using graphical
analysis, explain why Fµ must undergo a series of successive period-doubling
bifurcations.

§1.13 ANOTHER VIEW OF PERIOD THREE

In this section, we return to the consideration of the quadratic mapping
Fµ(x) = µx(1 − x). This time we will consider the specific parameter value
µ = 3.835, following some ideas of Smale and Williams. We will drop the
subscript µ for the remainder of this section and let F (x) = 3.835x(1 − x).
Our goal is to sharpen the results of §1.10 regarding the implications of the
existence of a periodic point of period three. With a calculator, one may
check easily that there is an attracting orbit of period three for f given to
six decimals by

a1 = .152074
a2 = .4945148
a3 = .9586346.

Moreover, (F 3)′(ai) ≈ −.395 approximately. The existence of such a periodic
point can be proved rigorously by hand computation: one simply finds a
small interval about a1 which is mapped inside itself by F 3 with derivative
everywhere less than one. We will relegate the tedious details to the exercises,
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but it is important to realize that the computations involved can be done by
hand and with complete accuracy.

By Sarkovskii’s Theorem, F has periodic points of all periods. By the
results of §1.11, none besides ai can be attracting. Hence, for all practical
purposes, these points are invisible to the computer. This brings up the
question: where are all of these other periodic points and exactly how many
of them are there? We answer these questions below by introducing a more
general concept from symbolic dynamics, the subshift of finite type.

We first define the shift on N symbols. Let ΣN denote the set of all
possible sequences of natural numbers between 1 and N , i.e.,

ΣN = {(s) = (s0s1s2 . . .)|sj ∈ Z, 1 ≤ sj ≤ N}.

Note that, unlike the case of Σ2 introduced before, we will not allow 0 as an
entry in a sequence ΣN ; we will use instead the symbols 1 through N . This
will help with the “bookkeeping” later. As in §1.6, there is a natural metric
or distance function on ΣN defined by

dN [s, t] =
∞∑
i=0

δ(si, ti)
N i

where δ(si, ti) = 0 if si = ti and δ(si, ti) = 1 otherwise. The proof of the
following Proposition is similar to that of Propositions 6.2 and 6.3 and is
therefore left as an exercise.

Proposition 13.1.
1. dN is a metric on ΣN .
2. If si = ti for i = 0, . . . , k, then dN [s, t] ≤ 1/Nk.
3. If dN [s, t] < 1/Nk then si = ti for i ≤ k.

Just as in the case of Σ2, we have the shift map given by σ(s0s1s2 . . .) =
(s1s2s3 . . .). Proposition 6.5 transfers over verbatim to this case to show that
σ is continuous.

Our goal is to describe certain subsets of ΣN which arise naturally and
which provide a more general setting for symbolic dynamics. Let A be an
N ×N matrix whose entry in the ith row and jth column, which we denote by
aij , is either 0 or 1. That is, A is an N × N square array of 0’s and 1’s. A is
called the transition matrix for the system. We will use A to describe which
sequences in ΣN lie inside a subset which we denote by ΣA. A sequence
s = (s0s1s2 . . .) lies in ΣA if it obeys the following rule. Each adjacent pair
of entries in the sequence s determines a location in the matrix A, the asisi+1
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entry. The sequence lies in ΣA if and only if every such entry is 1. More
concisely,

ΣA =
{
(s) = (s0s1s2 . . .)

∣∣∣∣asisi+1 = 1 for all i
}
.

That is, we use the transition matrix to rule out certain pairs of entries in a
sequence which lies in ΣA.

Example 13.2. Let

A =
(

1 0
0 1

)
.

Since a12 = a21 = 0, it follows that 1 and 2 can never be adjacent in a
sequence in ΣA. Consequently, there are only two allowable sequences in
ΣA, the constant sequences (111 . . .) and (222 . . .).

Example 13.3. Let

A =
(

1 1
0 1

)
.

In this example, 2 may follow 1, but not vice-versa. Thus, ΣA consists of the
constant sequences plus any sequence of the form (11 . . . 11 222 . . .) where
there are arbitrarily many 1’s followed by infinitely many 2’s.

Example 13.4. Let

A =
(

1 1
1 0

)
.

Any combination of 1’s and 2’s are allowed in a sequence in ΣA, except a
pair of adjacent 2’s.

We denote by σA the restriction of σ to the set ΣA. The following
proposition guarantees that this makes sense.

Proposition 13.5. ΣA is a closed subset of ΣN which is invariant under
σA.

Proof. Invariance is clear. To prove that ΣA is closed, we suppose that si is
a sequence of elements of ΣA, i.e., a sequence of sequences, which converge
to t. If t �∈ ΣA, there is a smallest integer α for which atαtα+1 = 0.

Since the si converge to t, there is another integer K such that, if i > K,
then dN [si, t] < 1/Nα+1. By Proposition 13.1, this forces t0, t1, . . . , tα+1 to
agree with the corresponding entries of si for i ≥ K. In particular, we must
have atαtα+1 = 1, since si ∈ ΣA. This contradiction establishes the result.

q.e.d.
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Fig. 13.1. The graphs of F (x) and F 3(x).

We call σA a subshift of finite type, since it is determined by the finitely
many conditions imposed by the transition matrix A. There are subshifts
which are not of finite type, but we will not discuss them in this book.

We now return to the quadratic map F (x) = 3.835x(1 − x). Recall that
there is an attracting periodic orbit in the vicinity of a1 = .149888, a2 =
.489172, and a3 = .959299. The graphs of F and F 3 may be sketched as in
Fig. 13.1.

There is a second periodic orbit of period 3 for F which we denote by
b1, b2, b3. These points are given approximately by

b1 = .169040
b2 = .539247
b3 = .953837

with F (b1) ≈ b2, F (b2) ≈ b3. One may calculate that (F 3)′(bi) ≈ 2.66.
Again, the existence of this periodic orbit can be proved by computing both
F 3 and (F 3)′ on a small interval about bi and noting that F 3 expands this
interval over itself.

Recall from §1.11 that there is a maximal open interval about each ai

which consists of points which tend to ai under iteration of F 3. We denote
this interval by W (ai). From the proof of Theorem 11.4, we see that one of
the endpoints of each W (ai) is fixed by F 3. Hence bi is one of the endpoints
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Fig. 13.2. A portion of the graph of F 3(x) depicting
b̂3 and W (a3).

of W (ai). Let us denote by b̂i the point on the opposite side of ai from bi

which is mapped to bi by F 3. See Fig. 13.2.
Let A1 = (b̂1, b1), A2 = (b̂2, b2), and A3 = (b3, b̂3). Note that F maps

A1 and A3 monotonically onto A2 and A1 respectively, but F has a critical
point at 1/2 ∈ A2 so F is not monotonic on this interval. Since, however,
the maximum value of F is .95975, it follows that F (A2) is contained in A3.
Also note that F (b2) = F (b̂2) = b3.

As in §1.5, it is easy to prove that if x < 0 or x > 1 then F n(x) → −∞.
Moreover, if x ∈ Ai for some i, then Fn(x) tends to the orbit of ai. Hence
all of the other periodic points must lie in the complement of the Ai in I.
There are four closed intervals in the complement of the Ai in I; we call these
intervals I0, I1, I2, and I3, from left to right. Since we know the behavior of
the bi under iteration of F , we know how these four intervals are mapped by
F . Their images are depicted in Fig. 13.3.

Since there are no other periodic points for F in the W (ai), it follows
that all of the infinitely many periodic points must lie in the Ij . In fact, we
can say more.

Proposition 13.6. All periodic points of F lie in I1 ∪ I2 with the exception
of the fixed point at 0 and the periodic point of period 3: a1, a2, and a3.

Proof. Note that F is monotonic on each of the intervals Ij . From Figure
13.3, we see that F maps I0 across both I0 and I1, I1 onto I2, I2 across both
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Fig. 13.3. The images of I0, I1, I2, and I3.

I1 and I2, and finally I3 onto I0. From this it follows that if a periodic point
x ∈ I1 ∪ I2, then F (x) ∈ I1 ∪ I2. Thus, if x ∈ I1 ∪ I2 lies on a periodic orbit,
then the entire orbit of x lies in I1 ∪ I2.

Now if x ∈ I0 and x �= 0, we note that F (x) > x. Hence there is an n
for which Fn(x) �∈ I0. Either Fn(x) ∈ A1, in which case x is not periodic, or
F n(x) ∈ I1. In the latter case, the forward orbit of Fn(x) can never leave I1
or I2 to return to x, so, again, x is not periodic. Finally, if x ∈ I3, F (x) ∈ I0,
so x is again not periodic.

q.e.d.
Consequently, all of the remaining periodic points for F lie in I1∪I2. Let

us denote by Λ the set of points whose entire orbit is contained in these two
intervals. To understand the dynamics of F on Λ, we again invoke symbolic
dynamics. We define the sequence associated to x by the rule

S(x) = (s0s1s2 . . .)

where sj = 1 if F j(x) ∈ I1 and sj = 2 if F j(x) ∈ I2. Since F (I1) = I2, it
follows that a 1 can only be followed by a 2, i.e., that S takes its values in
ΣA where

A =
(

0 1
1 1

)
.

We remark that we encountered a similar phenomenon in the proof of
Sarkovskii’s Theorem. Indeed, the existence of a point of period 3 forces the
existence of a pair of intervals that behave like I1 and I2 under iteration of
F . In the present case, however, we can say much more.

Theorem 13.7. The restriction of F to Λ is topologically conjugate to the
subshift of finite type given by σA on ΣA.
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Proof. The proof of surjectivity and continuity of S proceeds exactly as in
§1.7 so we omit the details. The only difference from §1.7 arises in the proof
that S is one-to-one, so we concentrate on this fact. The difficulty here is
that |F ′(x)| is not everywhere greater than one on I1 ∪ I2. However, we can
say that |F ′(x)| > ν = F ′(b̂2) ≈ .3, since F ′′ < 0 and the interval (b̂2, b2)
containing the critical point has been removed. Hence |F ′| is bounded from
below.

We claim that there exists λ > 1 such that, if x ∈ Λ, then |(F 3)′(x)| > λ.
To prove this, we note that there are three closed intervals in I1 ∪I2 in which
|(F 3)′(x)| ≤ 1. Two of them, B1 and B2, are symmetrically located with
respect to 1/2, while the third, B3, lies in I2. We note that the F 3-image of
B3 is contained in (b̂1, b1) and so B3 ∩ Λ = ∅. See Fig. 13.1.

We claim that B1 and B2 are mapped by F 3 into (b3, b̂3). Indeed, one
may check easily that B2 is contained in the interval .661 < x < .683 and
that (F 3)′(.661) > 1, (F 3)′(.683) < −1. Furthermore, F 3 maps this interval
inside (b3, b̂3) as required. By symmetry, F 3(B1) ⊂ (b3, b̂3) as well. Hence
B1 ∩ Λ = ∅ and B2 ∩ Λ = ∅.

We now prove that Λ is a hyperbolic set. Choose K such that ν2λK > 1.
Let N = 3K +2. If n > N , then we may write n = 3(K +α)+ i where α > 0
and 0 ≤ i ≤ 2 are integers. Hence, if x ∈ Λ, using the Chain Rule, we have

|(F n)′(x)| = |(F i)′(F 3(K+α)(x))| · |(F 3(K+α))′(x)| > ν2λK+α > 1.

This proves that Λ is a repelling hyperbolic set.
With hyperbolicity established, the remainder of the proof is similar to

that of Theorem 7.2. This completes the proof.
q.e.d.

As a remark, we emphasize that although this proof is most easily carried
out with a calculator in hand, the numbers are not so horrendous that actual
hand computation is ruled out. This is a real proof!

Remark. The techniques used in this proof may be used to prove that the
quadratic map Fµ(x) = µx(1 − x) admits a hyperbolic set when 4 < µ ≤
2 +

√
5, the cases we omitted in §1.5. See Exercise 7.

We now see that there are periodic points for F of all periods, as guaran-
teed by Sarkovskii’s Theorem. Indeed, to produce a periodic point of period
k in ΣA, we need only list a string of k − 1 2’s followed by a 1, and then
repeat this sequence. These are exactly the orbits produced in the proof of
Sarkovskii’s Theorem. Of course there are many other allowable repeating
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sequences in ΣA, so this raises the question of exactly how many periodic
points of period k F has.

To answer this, we first need a definition.

Definition 13.8. Let A = (aij) be an N × N matrix. The trace of A is
given by

Tr(A) =
N∑

i=1
aii ,

i.e., by the sum of the diagonal entries of A.

The trace is an important invariant of the conjugacy class of a matrix
which is studied in advanced linear algebra. For us, its purpose is quite
different: the trace of the powers of A gives an accurate count of the periodic
points in ΣA. Recall that if A = (aij) and B = (bij) are N × N matrices,
then the product of A and B is the N × N matrix A · B = (cij) where

cij =
N∑

k=1
aikbkj .

In particular, if

A =
(

0 1
1 1

)
then

A2 = A · A =
(

1 1
1 2

)

A3 = A · A2 =
(

1 2
2 3

)

A4 = A · A3 =
(

2 3
3 5

)
.

Proposition 13.9. Let A be an N × N transition matrix. Then

card PerKσA = Tr (AK).

Proof. Recall that a sequence s in ΣA is fixed by σK iff s is a repeating
sequence of the form (i0i1 . . . iK−1 i0i1 . . . iK−1 . . .). Such a sequence lies in
ΣA iff ai0i1 = ai1i2 = . . . = aiK−1i0 = 1 or, equivalently ai0i1ai1i2 ·. . .·aiK−1i0 =
1. Thus, the products ai0i1ai1i2 · . . . · aiK−1i0 = 1 if and only if the string
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i0i1 . . . iK−1i0 is an allowed piece of a sequence in ΣA, and equal to zero
otherwise. Consequently, ∑

i0,i1,...,iK−1

ai0i1ai1i2 · . . . · aiK−1i0

gives the cardinality of PerKσA. On the other hand, it is easily checked that
this sum is Tr(AK).

q.e.d.
Note that we may therefore compute easily that, for

A =
(

0 1
1 1

)

we have
Tr(A) = 1

Tr(A2) = 3

Tr(A3) = 4

Tr(A4) = 7

Tr(A5) = 11.

In general, for K > 2,

Tr(AK) = Tr(AK−1) + Tr(AK−2).

This recursion is curiously the same as the well-known Fibonacci recur-
sion relation

pk = pk−1 + pk−2

with k > 2. The usual Fibonacci sequence begins with p1 = p2 = 1; here we
have p1 = 1 but p2 = 3.

Exercises
1. Let µ = 3.835 and a1 = .149888. Prove that there is a small interval
about a1 which is mapped inside itself by F 3

µ .
2. Show that there is a smaller interval about a1 which is mapped inside
itself and on which |(F 3

µ)′| < 1. This proves that there is a unique attracting
periodic point with period 3 near a1.
3. Define a metric on ΣN by

dn[s, t] =
∞∑

k=0

|sk − tk|
nk

.
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a. Prove that dn is a metric.
b. Prove the analogue of Proposition 6.2, i.e., if si = ti for i = 0, . . . , k
then dn[s, t] ≤ 1/nk. Similarly, if dn[s, t] < 1/nk, then si = ti for i ≤ k.

4. Let A =
(

0 1
1 1

)
. Prove that Tr(AK) = Tr(AK−2) + Tr(AK−1).

5. Using the intervals I0 and I3 as well as I1 and I2, show that the set of
points whose orbits remain for all time in these four intervals also determines
a subshift of finite type. What is the transition matrix?
6. Let

A =


 1 1 0

1 1 0
0 0 1


.

Find a formula for the trace of AK .
7. Prove that Fµ(x) = µx(1 − x) admits a hyperbolic set in [0, 1] when
4 < µ ≤ 2 +

√
5.

§1.14 MAPS OF THE CIRCLE

In this section, we specialize some of our previous results to the case of
maps of the circle. The dynamics of these maps are somewhat different from
maps of R since the circle is bounded. In particular, diffeomorphisms of S1

are more interesting, since the circle permits non-trivial recurrence while the
real line does not. Diffeomorphisms of S1 may have periodic points of any
given period, but diffeomorphisms of R may have only fixed or period two
points.

For simplicity, we will restrict attention in this section to orientation-
preserving diffeomorphisms of S1, i.e., diffeomorphisms f :S1 → S1 which
preserve the order of points on the circle. Orientation-reversal does not add
significant difficulties, so we deal with this case in the exercises.

To study the dynamics of a circle map, it is helpful to lift the map to R.
That is, we define the map π:R → S1 by

π(x) = exp(2πix) = cos(2πx) + i sin(2πx).

The map π is an example of a covering map, since it wraps R around S1

without doubling back (i.e., without critical points).
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Definition 14.1. F :R → R is a lift of f :S1 → S1 if

π ◦ F = f ◦ π.

We remark that π is not a topological conjugacy between F and f since
it is many-to-one.

Example 14.2. Let τω(θ) = θ + 2πω be translation by angle 2πω. For
each k ∈ Z, the map Tω,k(x) = x + ω + k is a lift of τω. Similarly, if
f(θ) = θ + ε sin(θ), then Fε,k(x) = x + ε

2π sin(2πx) + k is a lift of f .

Remarks.
1. There are always infinitely many different lifts for a given map f :S1 → S1.
Indeed, one may easily prove that any two lifts of f differ by an integer (see
Exercise 3).
2. In the above examples, there is a similarity between the formulas for
the map on the circle and its lift. However, it is important to realize that
these maps are defined on different spaces and thus one should expect that
they have very different dynamics. Indeed, if ω is rational, then all points of
S1 are periodic under τω, but no points of R are periodic under Tω (unless
ω = 0).
3. If F is a lift of f then we must have F ′(x) > 0 so that F is increasing.
Furthermore, we must have F (x+1) = F (x)+1, and, more generally, F (x+
k) = F (x)+k for any integer k. We stress that these facts hold since f is an
orientation preserving diffeomorphism of the circle. For other types of maps,
one may also define the lift to the real line, but this last equality need not
hold. Consequently,

F (x + 1) − (x + 1) = F (x) − x,

so that F − id is a periodic function with period 1, where id(x) = x is the
identity function. Similarly, F n − id is periodic with period 1 as well, since
F n is a lift of fn. Using this, one may check easily that, if |x − y| < 1, then
we must also have |Fn(x) − Fn(y)| < 1.

The most important invariant associated to a circle map is its rotation
number . This number, between 0 and 1, essentially measures the average
amount points are rotated by an iteration of the map. Before defining the
actual rotation number, however, we introduce a preliminary concept.
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Let f : S1 → S1 be an orientation-preserving diffeomorphism and choose
any lift F of f . Define

ρ0(F ) = lim
n→∞

Fn(x)
n

.

Note that this limit, if it exists, does not depend upon the choice of x. Indeed,
since Fn − id is periodic, we have

|F n(x) − Fn(y)| ≤ |(Fn(x) − x) − (Fn(y) − y)| + |x − y|
≤ 1 + |x − y|

where this second inequality follows from Remark 3 above. Therefore,

lim
n→∞

|Fn(x) − Fn(y)|
n

= 0

so that ρ0 is independent of x. However, ρ0 does depend on the choice of the
lift.

Example 14.3. Let τω(θ) = θ + 2πω be translation and consider the lift
Tk(x) = x + ω + k. We have

ρ0(Tk) = lim
n→∞

x + nω + nk

n
= ω + k

so that different lifts produce different values for ρ0. Note, however, that
they all differ by integers.

Example 14.4. Suppose f : S1 → S1 has a fixed point at θ = 0 (we may
always arrange this by conjugation with a translation.) Suppose F is a lift
of f . Then F (0) is an integer, say F (0) = k. It follows that Fn(0) = nk so
that ρ0(F ) = k. Hence we also have

lim
n→∞

Fn(x)
n

= k

for all x ∈ R.

As before, we note that any two lifts produce an integer difference in
ρ0. This is a general fact. Let F1 and F2 be lifts of f . By Exercise 3,
there is an integer k for which F2(x) = F1(x) + k. It follows easily that
F n

2 (x) = F n
1 (x) + nk so that ρ0(F2) = ρ0(F1) + k. We may thus remove the

dependence of ρ0 on the lift by eliminating the integer part of ρ0.
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Definition 14.5. The rotation number of f , ρ(f), is the fractional part of
ρ0(F ) for any lift F of f . That is, ρ(f) is the unique number in [0, 1) such
that ρ0(F ) − ρ(f) is an integer.

We remark that nothing in our definitions of ρ0(F ) or ρ(f) requires any
differentiability; rotation numbers are equally well-defined for maps which
are only homeomorphisms.

We have not yet verified that the limit ρ0(F ) actually exists. This is
easy if f has a periodic point. Suppose that fm(θ) = θ and π(x) = θ. Then
Fm(x) = x + k for some integer k. Hence F jm(x) = x + jk, and we have

lim
j→∞

|F jm(x)|
jm

= lim
j→∞

(
x

jm
+

k

m

)
=

k

m
.

More generally, we may write any integer n in the form n = jm + r where
0 ≤ r < m. Note that there is a constant M such that

|F r(y) − y| ≤ M

for all y ∈ R and 0 ≤ r < m. Thus we have

|F n(x) − F jm(x)|
n

=
|F r(F jm(x)) − F jm(x)|

n

≤ M

n
.

Consequently

lim
n→∞

|F n(x)|
n

= lim
j→∞

|Fmj(x)|
mj

=
k

m
.

This shows that the rotation number ρ(f) exists whenever f has a peri-
odic point. Moreover, ρ(f) is rational in this case.

In case f has no periodic points, we need a slightly more complicated
argument. Since Fn(x) − x is never an integer if n �= 0, there is an integer
kn such that

kn < F n(x) − x < kn + 1

for every x ∈ R. Applying this inequality repeatedly to the cases x = 0,
F n(0),F 2n(0), . . . , we find

kn < Fn(0) < kn + 1

kn < F 2n(0) − Fn(0) < kn + 1
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...

kn < Fmn(0) − F (m−1)n(0) < kn + 1.

Adding each of these inequalities, we have

mkn < Fmn(0) < m(kn + 1).

Hence
kn

n
<

Fmn(0)
mn

<
(kn + 1)

n
.

The original inequality gives immediately

kn

n
<

F n(0)
n

<
kn + 1

n
.

Thus, combining these two expressions, we find

∣∣∣Fmn(0)
mn

− Fn(0)
n

∣∣∣ < 1
n

.

Now this entire argument may be repeated with n and m interchanged,
yielding ∣∣∣Fmn(0)

mn
− Fm(0)

m

∣∣∣ < 1
m

.

It follows that ∣∣∣Fn(0)
n

− Fm(0)
m

∣∣∣ < 1
n

+
1
m

.

This means that the sequence {F n(0)/n} is an example of a Cauchy sequence.
Such a sequence in R is easily seen to converge. See Exercise 2. Hence we
have proved

Theorem 14.6. Let f :S1 → S1 be an orientation-preserving diffeomor-
phism with lift F . Then

ρ0(F ) = lim
n→∞

|Fn(x)|
n

exists and is independent of x. Consequently, the rotation number ρ(f) is
well-defined .

The proof of this Theorem also allows us to establish the result that ρ(f)
depends continuously on f .
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Corollary 14.7. Suppose f : S1 → S1 is an orientation-preserving diffeo-
morphism. Let ε > 0. There exists δ > 0 such that if g: S1 → S1 is also a
diffeomorphism which is C0-δ close to f , then |ρ(f) − ρ(g)| < ε.

Proof. Choose n such that 2/n < ε. We may choose a lift F of f with
r − 1 < Fn(0) < r + 1 for some integer r. We may also choose δ > 0 small
enough so that there is a lift G of g with r − 1 < Gn(0) < r + 1 as well. As
in the previous proof, we have

m(r − 1) < Fnm(0) < m(r + 1)

m(r − 1) < Gnm(0) < m(r + 1).

Consequently, ∣∣∣F nm(0)
nm

− Gnm(0)
nm

∣∣∣ < 2
n

< ε

for all m. Since
lim

m→∞
Fnm(0)

nm
= ρ0(F ),

we are done.
q.e.d.

As we remarked above, the rotation number measures the average rota-
tion that a diffeomorphism induces on S1. For example, ρ(τω) = ω where
τω(θ) = θ +2πω is rotation by angle 2πω. For the map f(θ) = θ +sin2(θ/2),
we have ρ(f) = 0. Indeed, f fixes the point θ = 0, but all other points are
advanced slightly by f . One may check easily that fn(θ) → 0 as n → ±∞,
so that points never make one complete circuit of S1 under iteration of f .

An important property of ρ(f) is its invariance under topological conju-
gacy. If f and g are both orientation-preserving diffeomorphisms of S1, then
it is easy to check that ρ(f) = ρ(g−1fg). See Exercise 4.

We have shown above that if f has a periodic point, then ρ(f) is rational.
When ω is irrational, the translation τω has no periodic points by Jacobi’s
Theorem. Thus we are led to suspect that ρ(f) is irrational if f has no
periodic points. This is indeed the case, as we now show.

Proposition 14.8. ρ(f) is irrational if and only if f has no periodic points.

Proof. Given our previous results, it suffices to show that if f has no periodic
points, then ρ(f) is irrational. Let us assume that ρ(f) is rational and derive
a contradiction. As one may easily check, ρ0(Fm) = mρ0(F ) for any lift F .
Thus we may assume at the outset that ρ(f) = 0, but f has no fixed points.
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The lift F also has no fixed points, so we may assume that F (x) > x for all
x ∈ R (the other case is handled similarly.) Then either F n(0) < 1 for all
n or else there exists k > 0 for which F k(0) > 1. In the latter case, we find
Fmk(0) > m. Hence ρ0(F ) > 1/k, which gives a contradiction.

In the former case, the sequence Fn(0) is monotonically increasing in
[0, 1] and therefore converges. If p is the limit point of this sequence, we
have

F (p) = F ( lim
n→∞ Fn(0))

= lim
n→∞ Fn+1(0) = p

so that p is a fixed point for F . This again is a contradiction and establishes
the result.

q.e.d.
Let us now discuss the case of a map with irrational rotation number

in more detail. From the previous result, we know that such a map cannot
have any periodic points. One such map is the rotation map τω(θ) = θ+2πω
where ω is irrational. One might be hard pressed to think of another example
of a homeomorphism with irrational rotation number, but there are many
examples of such maps which are not topologically conjugate to an irrational
rotation. Recall that, by Jacobi’s Theorem, all orbits of an irrational rotation
are dense in S1. This property must be shared by any map topologically
conjugate to an irrational rotation. So, to produce a different map of S1, we
need only find a map which has an orbit that is not dense. The following
example, due to Denjoy, shows how to manufacture such a map.

Example 14.9. (A Denjoy map.) We will perform “surgery” on τω where
ω is irrational. Take any point θ0 ∈ S1. We cut out each point on the orbit
of θ0 and replace it with a small “interval.” That is, at the point τn

ω (θ0) we
cut apart the circle and glue in a small interval In in its place. Provided we
take In small enough so that the lengths �(In) are positive and satisfy

∞∑
n=−∞

�(In) < ∞ ,

the result of this “operation” is still a “circle”—a little larger than before
but still a simple closed curve. See Fig. 14.1.

We may now extend the map to the union of the In’s by choosing any
orientation-preserving diffeomorphism hn taking In to In+1. This extends our
original map to be a homeomorphism of the new circle. Note that the new
map has no periodic points, so its rotation number is irrational. Moreover,
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Fig. 14.1. Opening up the circle to construct
a Denjoy homeomorphism.

no point in the interior of In ever returns to In under iteration of the map,
so the orbits of these points are certainly not dense.

Remarks.
1. The Denjoy example is clearly a homeomorphism of the circle, but its con-
struction probably casts doubt in the reader’s mind as to whether it can be
made a diffeomorphism. Actually, one may choose the hn’s carefully enough
so that the resulting map is a C1 diffeomorphism. See Exercise 5. This
construction however, cannot yield a C2 diffeomorphism. It is known that
a C2 diffeomorphism with irrational rotation number is always topologically
conjugate to τω for appropriate ω. Thus, there are surprisingly complicated
differences between the dynamics of C1 and C2 diffeomorphisms of the circle.

2. The Denjoy example gives an example of a wandering domain for a map
of the circle. Eliminating this type of behavior for maps of R necessitated
special assumptions such as negative Schwarzian derivative and detailed com-
putations. See §1.11.

At this point, it is useful to see how the previous discussion allows us
to analyze fairly completely the bifurcation structure of an important two-
parameter family of circle diffeomorphisms. This is the family of maps known
as the standard or canonical family.

Example 14.10. Consider the two-parameter family of maps of S1 given
by

fω,ε(θ) = θ + 2πω + ε sin θ.
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This map has the lift

Fω,ε(x) = x + ω +
ε

2π
sin(2πx)

which we will deal with exclusively when discussing f .
When ε = 0, this map reduces to the rotation map Tω. For 0 ≤ ε < 1, fω,ε

is a diffeomorphism of S1; when ε = 1, the map is only a homeomorphism.
When ε > 1, the map is no longer one-to-one.

Observe that, if ω1 > ω2, then

Fω1,ε(x) > Fω2,ε(x)

for all x ∈ R. It follows that

F n
ω1,ε(x) > Fn

ω2,ε(x)

so that ρ0(Fω1,ε) ≥ ρ0(Fω2,ε). Hence ρ0 is a non-decreasing function of ω for
each fixed ε. Moreover, by Corollary 14.7, ρ varies continuously with ω. Let
us fix ε �= 0 and consider fω = fω,ε.

Suppose that ρ(fω0) = p/q is rational. It follows that fω0 has a periodic
point of period q. Hence there exists x0 ∈ R such that

F q
ω0

(x0) = x0 + k

for some integer k. Actually, k = p. We claim that there is an interval of
ω-values for which the rotation number of fω0 is p/q. To see this, consider
the graph of F q

ω0
. This graph meets the straight line y = x + k at the point

(x0, x0 + k). If (F q
ω0

)′(x0) �= 1, then it follows immediately from the Implicit
Function Theorem that there is an open interval about ω0 for which the
graph of each F q

ω also pierces the line y = x + k. Hence ρ(fω) = p/q for all
of these values. If, on the other hand, (F q

ω0
)′(x0) = 1, the argument is more

complicated. To sketch the proof in this case, we observe that, since Fω0 is
analytic, there is an integer j for which the jth derivative (F q

ω0
)[j](x0) �= 0.

Otherwise, F q
ω0

(x) would be identically equal to x + k. If j is odd, it follows
immediately that the graphs of nearby F q

ω must pierce the line y = x + k.
If j is even, then either F q

ω0
is concave up or concave down at x0. In either

event, the graphs of nearby F q
ω for ω < ω0 or ω > ω0 must cross the line

y = x + k. We leave the details to the reader.
Thus we see that, for each rational number p/q, there is an interval

with non-empty interior on which ρ(fω) = p/q. On the other hand, there
is a unique ω for which ρ(fω) is a given irrational number. This is a fairly
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Fig. 14.2. The graph of ρ(fω) is a Cantor function.

deep result whose proof we will omit. The graph of ρ(fω) is an example
of a Cantor function; it is constant on intervals corresponding to rational
rotation numbers, yet everywhere continuous. This graph has also been
called a “devil’s staircase.” See Fig. 14.2.

The bifurcation diagram for the standard family is most interesting. Let
us plot the regions in the ε-ω plane where ρ(fω,ε) is a fixed rational number.
These regions are necessarily “tongues” which flare out from each point of
the form ε = 0, ω = p/q. None of these tongues can overlap when ε < 1 and
all have non-empty interior. See Fig. 14.3.

The bifurcation diagram for ε > 1, when fω,ε is no longer a homeomor-
phism, is also interesting. See Exercise 6.

The dynamics of the maps fω for fixed ε > 0 are easy to describe, given
our previous work on bifurcation theory. Note that fω has a fixed point
provided

sin θ =
−2πω

ε
.

From the graph of sin(θ) in the interval 0 ≤ θ ≤ 2π, we therefore read off
that this equation has two solutions if |2πω| < ε, one solution if |2πω| = ε,
and no solutions if |2πω| > ε. One may easily compute that |f ′

ω(θi)| �= 1 at
the fixed points θi, i = 1, 2, which occur when |2πω| < ε, whereas f ′

ω(θ) = 1
at the unique fixed point for the map with |2πω| = ε. We may interpret
this dynamically as follows. A fixed point for fω is born in a saddle node
bifurcation at θ = π/2 when ε = −2πω. This fixed point separates into two
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Fig. 14.3. The bifurcation diagram for the standard family.

fixed points which race around the unit circle in opposite directions as ω
increases. Finally, the two fixed points meet and coalesce in another saddle
node bifurcation at θ = 3π/2, and then disappear. A similar phenomenon
occurs in the other tongues.

Exercises

1. Prove that an orientation-reversing diffeomorphism of S1 must have two
fixed points.
2. A sequence of real numbers {an} is called a Cauchy sequence if, for any
ε > 0, there is an integer N such that, for all n, m > N , |an −am| < ε. Prove
that any Cauchy sequence in R converges.
3. Prove that any two different lifts of a circle map must differ by an integer.
Conversely, prove that if F (x) is a lift of f , then so too is F (x) + k where
k ∈ Z.
4. Suppose f and g are orientation-preserving diffeomorphisms of S1. Prove
that ρ(f) = ρ(g−1fg).
5. The Denjoy example revisited . In this series of exercises, we show that
the Denjoy homeomorphism constructed in this section may actually be made
C1.
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a. For each integer n, let

�n =
1

(|n| + 1)(|n| + 2)
.

Show that ∞∑
n=−∞

�n < ∞

lim
|n|→∞

�n+1

�n
= 1.

b. For each n, let In = [an, bn] be an interval with length �n. Define a
map f on [an, bn] by

f(x) = an+1 +
∫ x

an

1 +
6(�n+1 − �n)

�3
n

(bn − t)(t − an)dt.

Show that f ′(an) = f ′(bn) = 1.
c. Prove that f takes [an, bn] onto [an+1, bn+1] in one-to-one fashion.
d. Prove that

f ′′
(

an + bn

2

)
= 0

but
lim

n→∞

(
lim

x→an
|f ′′(x)|

)
→ ∞.

Conclude that f is not C2.
e. Define the variation of f ′ on In to be

Vn = |f ′(an) − f ′(
an + bn

2
)|.

Prove that ∞∑
n=1

Vn

is unbounded so that f ′(x) is not of bounded variation.
If we now paste in the intervals In in place of an orbit of the irrational
rotation map, exactly as we did in this section, and define f on the In as
above, then the resulting circle map is C1.

6. The rotation number may also be defined even if f :S1 → S1 is not a
homeomorphism. In this case, however, the rotation number depends on x.
For the standard family when ε > 1, prove that the set of rotation numbers
which occur form an interval in R.
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§1.15 MORSE-SMALE DIFFEOMORPHISMS

This section continues the discussion of orientation preserving diffeomor-
phisms of the circle begun in the last section. Here we take a somewhat
different point of view: our goal is to understand as completely as possible
the large class of circle diffeomorphisms known as Morse-Smale diffeomor-
phisms. This class of maps has two important properties. First, each element
of this class is structurally stable and has a phase portrait which is easy to
describe. Unlike the quadratic family, Morse-Smale diffeomorphisms exhibit
no chaotic behavior whatsoever. Second, any circle diffeomorphism may
be approximated as closely as we desire by a Morse-Smale diffeomorphism.
Thus, the “generic” diffeomorphism of S1 is Morse-Smale and structurally
stable.

Definition 15.1. An orientation preserving diffeomorphism of S1 is Morse-
Smale if it has rational rotation number and all of its periodic points are
hyperbolic.

Example 15.2. The diffeomorphism f(θ) = θ + π
n + ε sin(2nθ) is Morse-

Smale when ε > 0 is small. There are two periodic orbits of period 2n,
an attracting periodic point whose orbit contains θ = π

2n , and a repelling
periodic point at θ = 0. The points on these orbits alternate around the
circle.

If f is a Morse-Smale diffeomorphism with ρ(f) = p/q, then, as in the
above example, all of the periodic points of f have period q. Thus fq has
only fixed points. Since each of these fixed points is hyperbolic, they must
be alternately sinks and sources around the circle. So the phase portrait of
an iterate of a Morse-Smale diffeomorphism is quite simple, as depicted in
Fig. 15.1. Thus, the fact that these maps are structurally stable comes as no
surprise.

Theorem 15.3. A Morse-Smale diffeomorphism of S1 is C1-structurally
stable.

Proof. We will prove this in the case where f is orientation-preserving and
satisfies ρ(f) = 0, so that f has only fixed points. The other cases are left
as exercises.
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Fig. 15.1. The phase portraits of some Morse-Smale diffeomorphisms.

Let F be the lift of f that has fixed points; only one lift of f has this prop-
erty. We will show that, if G is C1-ε close to F on R, then G is topologically
conjugate to F . The result on the circle follows immediately.

Since f is Morse-Smale, F has only finitely many fixed points in [0, 1]. Let
p1, . . . , pn be the fixed points for F . We may choose disjoint neighborhoods
Uj = (αj , βj) of pj with F ′(x) �= 1 on Uj. There exists εj > 0 such that
|F ′(x) − 1| > εj for each x ∈ Uj and, moreover, |F (αj) − αj | > εj , |F (βj) −
βj| > εj. Hence if a diffeomorphism G is C1-εj close to F on Uj, it follows
that G′(x) �= 1 on Uj and that G has a unique fixed point in Uj . See Fig. 15.2.

Now F has no fixed points in the complement of the Uj. Hence there
exists ε0 > 0 such that |F (x)−x| > ε0 for all x ∈ I − (∪n

j=1Uj). If G is C0-ε0
close to F on these intervals, then G has no fixed points in these regions as
well.

If we choose ε < min εj for j = 0, . . . , n, then any diffeomorphism G
which is C1-ε close to F has the same phase portrait as F . If G is a lift of
a diffeomorphism g of S1, one may apply the above remarks over all of R.
Consequently, g is Morse-Smale and has the same phase portrait of f . One
may then produce the conjugacy between f and g via fundamental domain
arguments as in §1.9. This completes the proof.

q.e.d.
We now turn to the question of the size of the set of structurally sta-

ble diffeomorphisms of S1. Circle maps come in two basic varieties: those
with rational and those with irrational rotation numbers. We show in Theo-
rem 15.4 that diffeomorphisms with irrational rotation numbers can never be
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Fig. 15.2. Perturbations of a Morse-Smale diffeomorphism.

structurally stable. Moreover, such diffeomorphisms can be approximated as
closely as we wish (with respect to the Cr-distance ) by a map with periodic
points. This result, known as the Closing Lemma, has straightforward proof
in the case of the circle but is much more difficult in higher dimensions. In-
deed, it is only known in the C1 case when the dimension is greater than one.
We remark that the bifurcation diagram for the standard family foreshadows
this result, since an open and dense subset of the ω-ε plane gives a map fω,ε

with rational rotation number.
Before we prove this result, we recall the definition of a recurrent point

(Exercise 7.3). A point θ ∈ S1 is recurrent under f if, for any neighborhood
U of θ, there exists n > 0 such that fn(θ) ∈ U . That is, the images of a
recurrent point must pile up on itself. If f has irrational rotation number,
then there must be at least one recurrent point for f . Indeed, since f has
no periodic points, if there were no recurrent points as well, there would be
a δ > 0 such that |fn(θ) − θ| > δ for all n > 0 and all θ ∈ S1. It follows
that all of the images of each θ ∈ S1 must be separated by an arc of length
δ. Since θ is not periodic, there must be infinitely many distinct images of
θ, and this yields a contradiction.

The Closing Lemma applies to just this situation. It allows us to “close
up” a recurrent orbit and make it periodic by an arbitrarily Cr-small per-
turbation.

Theorem 15.4. (The Closing Lemma.) Suppose f is a diffeomorphism of
S1 with an irrational rotation number. Then, for any ε > 0, there exists a
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diffeomorphism g: S1 → S1 which is Cr-ε close to f and which has rational
rotation number .
Proof. Let θ0 be a recurrent point for f and let U = (θ0 − δ, θ0 + δ) be an
arc of the circle about θ0. Since θ0 is recurrent, there exists a sequence of
integers ni → ∞ for which fni(θ0) ∈ U . Let us assume that all of the fni(θ0)
belong to the arc (θ0 − δ, θ0). We will modify f slightly on U so that θ0
becomes periodic for the perturbed map.

Let V ⊂ U be a neighborhood of θ0. Let φ be a bump function on V as
in Exercise 2.8. That is, φ(θ) = 1 if θ ∈ V but φ(θ) = 0 if θ ∈ S1 − U . Now
consider the map fε(θ) = f(θ)+ εφ(θ). For ε > 0 sufficiently small, fε is also
a diffeomorphism of S1. The Cr-distance between fε and f is given by

sup
θ∈U

ε|φ[r](θ)|

where φ[r](θ) denotes the rth derivative of φ at θ. Thus, by choosing ε small,
we may make fε as close as we please to f . Intuitively, fε behaves exactly
as f does off of the neighborhood U , while fε advances points by εφ(θ) each
time f maps a point to θ ∈ U . In particular, each time an orbit meets V it
is advanced by ε units.

We emphasize that fε only advances points as they land in U . Since f
and fε are order-preserving on S1, we never “lose ground” when applying the
perturbation (this is what makes the Closing Lemma so easy on S1). Since
the fni(θ0) accumulate on θ0, there is a smallest ni for which fni

ε (θ0) ≥ θ0.
By decreasing ε to 0, there must then be an ε0 for which fni

ε0 (θ0) = θ0. Thus
we have a periodic point for fε0 . We remark that this uses the continuous
dependence of the family fε on ε.

q.e.d.
We now turn our attention to the approximation of circle diffeomor-

phisms by Morse-Smale maps. We will prove the following theorem, which
is a special case of a result known as the Kupka-Smale Theorem.

Theorem 15.5. Let f be an orientation-preserving diffeomorphism of S1.
For any ε > 0, there is a C1- Morse-Smale diffeomorphism g which is C1-ε
close to f .

We begin the proof with several preliminary reductions. By the Closing
Lemma, we may assume at the outset that ρ(f) is rational. We will in fact
assume that ρ(f) = 0, so that f has only fixed points. The proof in the more
general periodic point case is analogous.

We will divide the proof of this theorem into a sequence of three steps.
First, we will show how to perturb f so that it has no intervals of periodic
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points. Second, we will show that any diffeomorphism map may be approxi-
mated by one with isolated periodic points. Finally, we will perturb f again
so that all of the isolated periodic points become hyperbolic.

For a diffeomorphism f of S1 with ρ(f) = 0, we always choose the lift F
of f which has fixed points: there is only one such lift for which this happens.
The next proposition shows that we may always break up intervals of fixed
points by a small perturbation.

Proposition 15.6. Let f :S1 → S1 be an orientation diffeomorphism which
satisfies f(θ) = θ for all θ in the interval |θ − θ0| ≤ 2πδ. For any ε > 0,
there exists a diffeomorphism g, Cr-ε close to f which satisfies

1. g(θ) = f(θ) if |θ − θ0| ≥ 2πδ;
2. g(θ0) = θ0;
3. g(θ) �= θ if 0 < |θ − θ0| < 2πδ.

Proof. Suppose first that the lift F satisfies F (x) = x for all x in the interval
J given by |x − x0| ≤ δ. We will perturb F to a new map F̂ which is Cr-ε
close to F and which has x0 as the unique fixed point in the interior of J .
To define F̂ , we take a bump function φ on J that satisfies φ(x) �= 0 for
|x − x0| < δ and φ(x0) = 1. Then, given any ε > 0, we set

F̂ (x) = F (x) + νφ(x) sin
(

π(x − x0)
δ

)
.

Then, provided ν is chosen small enough, it follows easily that F̂ is Cr-ε
close to F and that F̂ has the desired properties.

q.e.d.
The next step in the proof of the Kupka-Smale Theorem is to show

that any diffeomorphism may be approximated by one with isolated periodic
points. The previous proposition shows how intervals of periodic points may
be eliminated; the next shows how accumulation points of periodic points
may be destroyed by a small perturbation. As before, we will deal only with
fixed points.

Proposition 15.7. Suppose f is an orientation-preserving diffeomorphism
of the circle with ρ(f) = 0. Then there is a C1 diffeomorphism g which
is arbitrarily close to f with respect to the C1-distance and which has only
isolated fixed points.

Proof. Let us assume that x0 is an accumulation point of fixed points for the
lift F of f . Hence we must have F ′(x0) = 1 and F ′′(x0) = 0. Let J = [a, b]
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be an interval with a ≤ x0 ≤ b and on which

|F ′(x) − 1| < ε/4

|F (x) − x| < ε/4.

Let us assume also that F ′(a) = F ′(b) = 1. We will replace F by a C1

function on this interval which has at most one fixed point in (a, b).
Let G(x) = F (x)−x. Note that |G(x)−G(y)| ≤ ε/2 for any x, y ∈ J . We

assume that G(b)−G(a) > 0. The cases G(b)−G(a) = 0 and G(b)−G(a) < 0
are handled in an analogous fashion. By the Mean Value Theorem, we have

G(b) − G(a)
b − a

≤ max |G′(x)| <
ε

4

for x ∈ J . Let φ(x) be a bump function on J which satisfies
1. φ(x) ≤ ε/2 for all x ∈ J

2.
∫ b
a φ(x)dx = G(b) − G(a).

Since we have

G(b) − G(a) ≤ ε

4
(b − a),

it follows that it is possible to select a φ which satisfies both 1 and 2. Now
define

h(x) = G(a) +
∫ x

a
φ(t)dt.

By the Fundamental Theorem of Calculus, h is a C1 function on J . We have

|h(x) − G(x)| ≤ |G(a) − G(x)| + |
∫ b

a
φ(t)dt| ≤ ε

and

|h′(x) − G′(x)| = |φ(x) − G′(x)| ≤ ε.

Hence G and h are C1 − ε close on J . Therefore, F and h(x) + x are also
C1-ε close on J . Since h′(x) = φ(x) > 0 on J , it follows that h(x) + x has at
most one fixed point in J .

Thus we define a new map F̂ by

F̂ (x) =




F (x) x �∈ J

h(x) + x x ∈ J.
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Since h′(a) = h′(b) = 0, it follows that the derivatives of F̂ match at a and
b, and so F̂ is a C1- function which has the desired properties.

q.e.d.
Intuitively, in the proof of the preceding proposition, we have cut all of

the “wiggles” out of the graph of F on J and replaced them with a smooth
graph which meets the diagonal at most once. Applying this technique at
each point which is an accumulation of fixed points yields a perturbed map
with isolated and hence finitely many fixed points.

The final step in the proof of the Kupka-Smale Theorem is to perturb
f so that all of its periodic points are hyperbolic. The previous proposi-
tion guarantees that all periodic points are isolated, and hence a small local
“push” is all that is needed to make each periodic point hyperbolic.

Proposition 15.8. Let f be an orientation-preserving diffeomorphism of
the circle which has isolated periodic points. There is a diffeomorphism g
which is Cr-ε close to f and which has only hyperbolic periodic points .

Proof. We consider only the case where the lift has an isolated fixed point
at x0 with F ′(x0) = 1. There are three cases: x0 is a weak attractor, a weak
repeller, or the hybrid case where x0 attracts from one side and repels from
the other. Several examples of phase portraits of such maps were depicted
in Fig. 4.5.

We discuss only the first case; the others are left as exercises. Since x0 is
an attracting fixed point, there is δ > 0 such that |F (x) − F (x0)| < |x − x0|
as long as |x − x0| ≤ δ. We will perturb F in this interval so that the new
map F̂ has a unique hyperbolic attracting fixed point in this interval. Let
φ(x) be a bump function on |x − x0| ≤ δ with φ(x0) = 1. Define

F̂ (x) = F (x) − εφ(x) sin
(

π(x − x0)
δ

)
.

We have F̂ (x0) = x0 but |F̂ (x) − x0| < |x − x0| if x �= x0 provided ε > 0 is
small enough. Moreover,

F̂ ′(x0) = 1 − πε

δ
,

so x0 is hyperbolic. Clearly, if ε is chosen small enough F̂ is Cr-ε close to F .
q.e.d.

This completes the proof of the Kupka-Smale Theorem. The content of
this last proposition is depicted in Fig. 15.3.
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Fig. 15.3. Perturbing a non-hyperbolic fixed point.

We remark that the Kupka-Smale Theorem is also valid for Cr small
perturbations. The only place where we restricted our attention to C1 dif-
feomorphisms was in the proof of Proposition 15.7, but this restriction may
be removed. See Exercise 6.

Exercises

1. Extend the proof of structural stability of Morse-Smale diffeomorphisms
to the case of periodic points.
2. Prove that a Morse-Smale diffeomorphism which reverses orientation is
structurally stable.
3. Prove that the Cr distance between diffeomorphisms of S1 actually gives
a metric on the set of all Cr diffeomorphisms of S1.
4. Prove Proposition 15.5 in case f has periodic rather than fixed points.
5. Suppose F :R → R satisfies F (x0) = x0, F ′(x0) = 1, and x0 is attracting
from one side and repelling from the other. For ε arbitrarily small, construct
a Cr-ε small perturbation of F that has no fixed points in a neighborhood
of x0.
6. Construct a C∞ diffeomorphism g which is Cr-ε close to f and which
satisfies the conclusion of Proposition 15.7.
7. Construct explicitly a Morse-Smale diffeomorphism of S1 which has ex-
actly k repelling and k attracting periodic orbits of period n.
8. Construct explicitly a Morse-Smale diffeomorphism of the circle which
is orientation-reversing and which has 2 fixed points and k periodic orbits of
period 2.
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§1.16 HOMOCLINIC POINTS AND BIFURCATIONS

In this section, we return to the study of the bifurcations that occur in
one-dimensional dynamical systems. Here we will investigate the profound
effect that the presence of a single homoclinic point has on a dynamical
system. We will show that the existence of a homoclinic point often implies
the existence of a hyperbolic invariant set on which the map is chaotic.
Moreover, as a family of dynamical systems develops a homoclinic point, the
family undergoes a remarkably complicated sequence of bifurcations known
collectively as a homoclinic bifurcation.

Let p be a repelling fixed point. For simplicity, we will assume throughout
this section that f ′(p) > 1 (otherwise replace f by f2). We remark that
everything below applies equally well to repelling periodic points with only
minor modifications. Recall that if p is a repelling fixed point, then there is
an open interval about p on which f is one-to-one and satisfies the expansion
property

|f(x) − p| > |x − p|.

We define the local unstable set at p to be the maximal such open interval
about p. We denote this set by W u

loc(p).

Example 16.1. Let Fµ(x) = µx(1 − x) be the quadratic map with µ > 4.
Fµ has a repelling fixed point at 0. One may easily check that Wu

loc(0) =
(−∞, 1

2).

Definition 16.2. Let f(p) = p and f ′(p) > 1. A point q is called homoclinic
to p if q ∈ Wu

loc(p) and there exists n > 0 such that fn(q) = p. The point q
is heteroclinic if q ∈ W u

loc(p) and there exists n > 0 such that fn(q) lies on a
different periodic orbit.

We remark that if p has a homoclinic point, then p is sometimes called
a “snap-back repellor.” Since a homoclinic point q lies by definition in the
local unstable set about p, we can define a sequence of preimages of q, each of
which lies closer to p in the local unstable set. These preimages are uniquely
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Fig. 16.1. In Fig. 16.1.a, f admits a homoclinic point,
while in b. and c., f admits heteroclinic points.

defined since f is one-to-one on the local unstable set. A homoclinic point,
together with its backward orbit defined by the above preimages, and its
(finite) forward orbit, is called a homoclinic orbit. Thus a homoclinic orbit is
one which tends to a fixed point under backward iteration and which lands
on the same fixed point under forward iteration.

Example 16.3. If Fµ(x) = µx(1 − x) with µ > 4, there are two fixed
points, 0 and pµ, both of which admit infinitely many homoclinic as well as
heteroclinic points.

Figure 16.1 illustrates several homoclinic and heteroclinic points.
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Definition 16.4. A homoclinic orbit is called nondegenerate if f ′(x) �= 0
for all points x on the orbit. Otherwise, the orbit is degenerate.

Note that, for the quadratic map above, all homoclinic points to both
0 and pµ are nondegenerate when µ > 4. Indeed, from §1.5, we know that
the only critical point tends to infinity. If µ = 4, 1/2 lies on a degenerate
homoclinic orbit to 0. We will see below that nondegenerate homoclinic
orbits lead to chaotic behavior, at least on some invariant subset, while
degenerate homoclinic orbits often lead to complicated bifurcations when a
parameter is varied.

Theorem 16.5. Suppose q lies on a nondegenerate homoclinic orbit to
a fixed point p. Then for each neighborhood U of p, there is an integer
n > 0 such that fn has a hyperbolic invariant subset in U on which fn is
topologically conjugate to the shift automorphism.

Proof. Let W be a neighborhood of p contained in U and, on which, f ′(x) >
δ > 1 for all x. By taking preimages if necessary, we may assume that q ∈ W .
There is an n > 0 such that fn(q) = p. Since there are only a finite number
of points on the orbit of q which do not lie in W , and since f ′(f i(q)) �= 0
for all i, we may find a neighborhood V of q in W and an ε > 0 such that
|(fn)′(x)| > ε for all x ∈ V . Since (fn)′(x) �= 0 for all x ∈ V , fn maps V
diffeomorphically onto an interval fn(V ) which contains p in its interior.

Now choose j so that δjε > 1. By choosing V smaller if necessary, we
may assume that fn+i(V ) ⊂ W for i = 1, 2, . . . , j, but fn+i(V ) ∩ V = ∅.
That is, each map fn+i expands the interval fn(V ) about p. Since V itself
belongs to the local unstable set, there is an integer k > j such that fn+k(V )
covers V and |(fn+k)′(x)| > 1 for x ∈ V . More precisely, fn+k:V → fn+k(V )
is a diffeomorphism onto its image which contains both p and V .

To introduce symbolic dynamics, let us choose another neighborhood V ′

of p which is contained in W and which satisfies
1. fn+k is one-to one on V ′ and fn+k(V ′) ⊂ W ;
2. |(fn+k)′(x)| > 1 for x ∈ V ′;
3. fn+k(V ′) ⊃ V ;
4. V ∩ V ′ = ∅. Clearly, fn+k(V ′) also covers V ′.

Hence the map fn+k expands both V and V ′ and their images contain
both V and V ′. Using the techniques of §1.7, it is now easy to construct a
topological conjugacy between fn+k and the shift. This completes the proof.

q.e.d.
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Corollary 16.6. Suppose f admits a nondegenerate homoclinic point to p.
Then, in every neighborhood of p, there are infinitely many distinct periodic
points.

The orbits of these periodic points do not, of course, lie in a neighbor-
hood of p. Rather, the orbits of the periodic points move far away, roughly
following the homoclinic orbit.

By Sarkovskii’s Theorem, f must have periodic points of all periods of
the form 2k, since fn+k has infinitely many periodic orbits with distinct
periods.

Remarks.
1. Note that the above procedure gives a conjugacy between fn+k and the
shift. It is easy to modify the above construction to find a conjugacy between
f i and the shift for any i > k + n.
2. By varying the number of intervals chosen, one may also find various
subshifts of finite type near fixed points which admit nondegenerate homo-
clinic orbits.

Thus, nondegenerate homoclinic points lead to the existence of a chaotic
regime for a map. A natural question is how do these types of homoclinic
points arise. Generally, the answer is they are spawned by a degenerate
homoclinic orbit as a parameter is varied. This gives another example of
how structural stability can fail as well as a different and much more complex
type of bifurcation than those considered in §1.12.

Observe that homoclinic orbits are preserved by topological conjugacy.
Indeed, one may also show that homoclinic points are nonwandering but not
recurrent (see Exercises 7.2 and 7.3).

Degenerate homoclinic orbits do not occur in structurally stable systems.
This is illustrated by the quadratic map F4(x) = 4x(1 − x). The point
1/2 clearly lies on a degenerate homoclinic orbit. When µ < 4, the map
Fµ(x) = µx(1 − x) has maximum value µ/4 < 1. Hence there are no points
homoclinic to 0 for these µ-values. On the other hand, when µ > 4, there are
infinitely many distinct homoclinic orbits (Exercise 3). Consequently, F4 is
not structurally stable. More generally, if f admits a degenerate homoclinic
orbit, a C1-small change in f can change the number of homoclinic orbits.
(See Fig. 16.2.)

To describe the bifurcations which occur when a degenerate homoclinic
point is created, let us again use the quadratic map as a model. We will show
that, in every neighborhood of the critical parameter value µ = 4, there are
µ-values for which the corresponding maps have bifurcations of either saddle
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Fig. 16.2. In Fig. 16.2.a, there is a degenerate homoclinic point to q.
Small perturbations yield either no homoclinic points as in b,

or infinitely many homoclinic points as in c.

node or period-doubling type. Thus, these bifurcations are accumulation
points of simple bifurcations. We use the term homoclinic bifurcation to
describe this phenomenon.

The remainder of this section is somewhat technical, due in part to the
fact that we are dealing with a specific family of maps. Nevertheless, the
ideas presented below are quite general. First, we need a lemma.

Lemma 16.7. Let Fµ(x) = µx(1 − x).
a. d

dµF 2
µ(1

2) < 0 if µ > 8
3 .
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Fig. 16.3. Fig. 16.4.

b. (F 2
µ)′′(1

2) = µ2(µ − 2).

In b, the differentiation is with respect to x, not µ. Both parts of this
lemma are proved by elementary calculus. We leave the details to the reader.

Now fix µ0 with 8
3 < µ0 < 4. We will show that there are infinitely many

values of µ in the interval [µ0, 4] for which Fµ has a saddle node bifurcation.
Since µ > 2, we may find a neighborhood J of 1

2 such that (F 2
µ)′′(x) > 0 for

all x ∈ J and all µ ∈ [µ0, 4]. We may assume that J is symmetric about
1
2 , say J = [x0, x̂0]. Since µ > 2, Fµ(1

2) > 1
2 . We may also assume that

Fµ(1
2) > x̂0. Since Fµ is an increasing function on [0, 1

2) and therefore on
[0, x0], there is a well-defined double sequence

0 < . . . < x2 < x̂2 < x1 < x̂1 < x0 < x̂0

where Fµ(x̂j) = x̂j−1 and Fµ(xj) = xj−1. Let Ij be the interval [xj , x̂j ]. See
Fig. 16.3.

Clearly, Fµ maps Ij monotonically onto Ij−1. Hence it follows that the
graph of F j+2

µ = F 2
µ ◦ F j

µ on Ij resembles that of F 2
µ on I0. This is made

more precise in the following

Proposition 16.8.
1. For each j ≥ 0, F j+2

µ has a unique critical point cj(µ) in Ij, and
F j+2

µ has a minimum at this point. Also, F j+2
µ (cj(µ)) = F 2

µ(1
2).

2. F j+2
µ (xj) = F j+2

µ (x̂j) = F 2
µ(x0).
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Fig. 16.5. The graph of F j+2
4 on Ij .

Proof. For part 1, we note that on Ij , we have F j+2
µ = F 2

µ ◦ F j
µ. Hence

(F j+2
µ )′(x) = (F 2

µ)′(F j
µ(x)) · (F j

µ)′(x).

Since F j
µ: Ij → I0 is a diffeomorphism, (F j

µ)′(x) > 0 for x ∈ Ij. Thus the only
critical points occur where (F 2

µ)′ vanishes, namely at F j
µ = 1

2 . The result now
follows immediately. Part 2 follows from the fact that Fµ(x0) = Fµ(x̂0) by
symmetry. The content of this proposition is illustrated in Fig. 16.4.

q.e.d.
When µ = 4, the situation is simpler to describe. The minimum value of

F j+2
4 on each Ij is 0. Since

F j+2
4 (xj) = F j+2

4 (x̂j) = F 2
4 (x0) > 0,

it follows that for j sufficiently large, F j+2
4 has precisely two fixed points on

Ij. (See Figure 16.5.)
To show that there are infinitely many bifurcations, we simply observe

that as µ increases, the graph of F j+2
µ on Ij “descends,” eventually crossing

the diagonal and creating a bifurcation. Let us make this more precise. For
each µ, the intervals Ij converge to 0. We claim that there exists an integer
N = N(µ) such that F j+2

µ (x) > x for all x ∈ Ij and j > N . Indeed, by
Proposition 16.8, the minimum value of F j+2

µ on Ij is F 2
µ(1

2) > 0. So if N(µ)
is chosen so that IN ⊂ [0, F 2

µ(1
2)], the result then follows immediately.
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Now we may show that there are infinitely many maps among the Fµ, µ ∈
[µ0, 4] which undergo bifurcations. Choose N(µ0) as above. For each j >
N(µ0) we have F j+2

µ (x) > x for all x ∈ Ij . Consequently, F j+2
µ has no fixed

points in Ij . Now let µ increase. When µ = 4, F j+2
4 has two fixed points in

Ij. Hence there must be at least one µ in [µ0, 4] for which F j+2
µ suffers a

bifurcation of fixed points.

Remarks.
1. One may show that there must be a saddle node bifurcation in Ij (which
is possibly degenerate) as µ increases.
2. There must also be a period-doubling bifurcation as µ increases, since
one of the fixed points for F j+2

4 in Ij has negative derivative.
3. Indeed, one may find an interval on which F j+2

µ may be “renormalized”
as we shall describe in the next section. In particular, it follows that there are
infinitely many parameter values in [µ0, 4] for which Fµ admits a degenerate
homoclinic point.

Exercises

1. Prove that homoclinic orbits are preserved by topological conjugacy.
2. Prove that homoclinic orbits are nonwandering but not recurrent (see
Exercises 7.2 and 7.3).
3. Let Fµ(x) = µx(1 − x). Prove that when µ > 4, Fµ has infinitely many
distinct orbits homoclinic to 0, all of which are nondegenerate. Prove that
F4 has infinitely many degenerate homoclinic orbits.
4. Prove Lemma 16.7.
5. Let p1 and p2 be repelling fixed points and suppose both points admit
nondegenerate heteroclinic orbits connecting each other. That is, suppose
there exists qi ∈ Wu

loc(pi) and integers n1 and n2 such that

fn1(q1) = p2, fn2(q2) = p1.

Prove that f admits a hyperbolic invariant set on which the map is chaotic.
6. Prove that the results of Exercise 5 apply to the family of maps gλ(x) =
x3 − λx for λ sufficiently large.
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§1.17 THE PERIOD-DOUBLING ROUTE TO CHAOS

As we have seen in §1.5, the quadratic map Fµ(x) = µx(1 − x) is simple
dynamically for 0 ≤ µ ≤ 3 but chaotic when µ ≥ 4. The natural question is:
how does Fµ become chaotic as µ increases? Where do the infinitely many
periodic points which are present for large µ come from? In this section, we
will give a geometric and intuitive answer to this question. In subsequent
sections, we will provide a more rigorous approach. This will necessitate
the introduction of a new, more powerful version of symbolic dynamics, the
kneading theory.

Sarkovskii’s Theorem provides a partial answer to the question of how
infinitely many periodic points arise as the parameter is varied. Before Fµ

can possibly have infinitely many periodic points with distinct periods, it
must have periodic points with all periods of the form 2j . The local bi-
furcation theory provides two “typical” ways that these periodic points can
arise: in saddle node bifurcations and via period-doublings. The question
then becomes which type of bifurcations occur as Fµ becomes more chaotic.

As we shall see, the usual scenario for Fµ to become chaotic is for Fµ

to undergo a series of period-doubling bifurcations. This is not always the
case, but it is a typical route to chaos. We remark that, although we deal
here with the quadratic map, the ideas below apply to a much wider class of
maps, namely the unimodal maps which we will describe in the next section.

Recall that the graphs of Fµ for various values of µ are as depicted
in Fig. 17.1. For 1 < µ < 3, Fµ has a unique attracting fixed point at
pµ = (µ − 1)/µ so that 0 < pµ < 1. Note that, as long as F ′

µ(pµ) < 0, there
exists a “partner” p̂µ for pµ in the sense that Fµ(p̂µ) = pµ and p̂µ < pµ.

Using graphical analysis of Fµ, we may also sketch the graphs of F 2
µ for

various µ-values. These are depicted in Fig. 17.2. Note in particular the
portion of the graph of F 2

µ in the interval [p̂µ, pµ]. We have enclosed this
portion of the graph inside a box. Let us make three observations about this
graph.

a. The graph of F 2
µ , although “upside-down,” resembles the graph of

the original quadratic map (for a different µ-value) in a sense to be
made precise later.

b. Indeed, inside the box, F 2
µ has one fixed point at an endpoint of the

interval [p̂µ, pµ] and a unique critical point within this interval.
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Fig. 17.1. The graphs of Fµ(x) = µx(1 − x) for µ = 1, µ = 2,
µ = 2.5, µ = 3, µ = 3.5, µ = 4 from left to right.
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Fig. 17.2. The graphs of F 2
µ(x) for µ = 2.5, µ = 3,

µ = 3.2, µ = 3.4, µ = 3.5, µ = 3.8 from left to right.
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c. As µ increases, the “hump” in this quadratic-like map grows until it
eventually protrudes through the bottom of the box.

That is, the behavior of F 2
µ on the interval [p̂µ, pµ] is very similar to that

of Fµ on its original domain [0, 1]. In particular, as µ increases, we first
expect a new fixed point in [p̂µ, pµ] for F 2

µ (i.e., a period 2 point for Fµ ) to
be born. Eventually, this “fixed point” will itself period-double, just as pµ

did for Fµ, producing a period 4 point. Continuing this procedure, we may
find a small box in which the graphs of F 4

µ , F 8
µ , etc., resemble the original

quadratic function. Thus we are led to expect that Fµ undergoes a series of
period-doublings as µ increases.

To make these ideas precise, we introduce the renormalization operator
R. R is a function of functions: R converts certain given functions on I to
new functions on I. To define R, we first suppose that µ is large enough so
that p̂µ is defined and p̂µ < pµ. For Fµ, µ > 2 suffices. Let Lµ denote the
linear map which takes pµ to 0 and p̂µ to 1. That is,

Lµ(x) =
1

p̂µ − pµ
(x − pµ).

One may check easily that the inverse of Lµ is given by

L−1
µ (x) = (p̂µ − pµ)x + pµ.

Note that Lµ expands the small interval [p̂µ, pµ] onto [0, 1] with a change of
orientation.

We now define the renormalization of Fµ by

(RFµ)(x) = Lµ ◦ F 2
µ ◦ L−1

µ (x).

The renormalized function RFµ is defined on I and shares many of the fea-
tures of Fµ. We single these out in a Proposition.

Proposition 17.1.
1. (RFµ)(0) = 0 and RFµ(1) = 0.
2. (RFµ)′(1

2) = 0 and 1
2 is the only critical point for RFµ.

3. S(RFµ) < 0, where S is the Schwarzian derivative.

The proof of each statement is straightforward and is left to the reader.
We observe that the renormalization of Fµ converts periodic points of period
2 for Fµ into fixed points for RFµ. Also, before µ reaches 4, the peak of
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Fig. 17.3. The graphs of F 2
µ , left, and RFµ for µ = 3.7.

the graph of RFµ already protrudes through the top of the unit square. See
Fig. 17.3.

Thus, as we noted above, we expect RFµ to undergo a period-doubling
bifurcation as µ increases. In fact, as long as RFµ admits a fixed point with
negative derivative at some point p1(µ), then we may find p̂1(µ) as before
and define a second renormalization. The linear map in this case takes p1(µ)
to 0 and p̂1(µ) to 1 and thus is a different linear map. Hence we see that the
entire picture repeats itself and we get another period-doubling bifurcation,
this time for F 2

µ . Continuing this process leads to a succession of period-
doubling bifurcations as µ increases. Hence we expect that the bifurcation
diagram for Fµ will include at least the complication shown in Fig. 17.4.

The computer allows us to verify these facts experimentally. Let us
compute the orbit diagram of Fµ. The orbit diagram is a picture of the
asymptotic behavior of the orbit of 1/2 for a variety of different µ-values
between 0 and 4. For each µ, we compute the first 500 points on the orbit of
1/2 under iteration of Fµ. We only plot the last 400 points on this orbit; this
eliminates the early “transient” behavior. We choose 1500 equally spaced
µ-values between 0 and 4. The µ-values are plotted on the horizontal axis
while the points along the corresponding orbit are plotted vertically. The
result of this experiment is depicted in Fig. 17.5. Note how the bifurcation
diagram for Fµ is embedded in this picture.

Remark. Essentially the same picture is obtained by plotting the orbit of
any other point x0 satisfying 0 < x0 < 1. We prefer to use the critical point
1/2 since, as we saw in Theorem 11.4, it is always attracted to an attracting
periodic orbit.
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Fig. 17.4. The bifurcation diagram for Fµ showing the repeated
period doublings. The integers represent the periods.

We see clearly in Fig. 17.5 many facts that we have discussed previously.
For example, when 0 ≤ µ ≤ 1, all orbits converge to the single attracting
fixed point at 0. Note that this convergence is slow when F ′

µ(0) is near 1
(when µ is close to 1). This accounts for the slight smear of points visible
near this point in the orbit diagram. For 1 < µ ≤ 3, all orbits are attracted
to the fixed point pµ �= 0, and this again is clear from the orbit diagram.
Thereafter, we see a succession of period-doubling bifurcations, confirming
what was described above.

Note that, for many µ-values beyond the period-doubling regime, it ap-
pears that the orbit of 1/2 fills out an interval. It is, of course, difficult to
determine whether the orbit is really attracted to an attracting periodic orbit
of very high period in this case, or whether it is in fact dense in an inter-
val. The computer, with its limited precision, cannot satisfactorily separate
these two cases. Nevertheless, the orbit diagram gives experimental evidence
that many of the µ-values after the period-doubling regime lead to chaotic
dynamics.

This is shown more convincingly in Fig. 17.6, where we have magnified
the portion of the orbit diagram corresponding to 3 ≤ µ ≤ 4. Note that the
succession of period-doublings is plainly visible in this figure.

Remark. We urge the reader with access to a computer with good graphics
capability to explore in detail other, smaller regions in the orbit diagram.
What, for example, occurs in the “windows” where the orbit of 1/2 is at-
tracted to an attracting periodic orbit of period n? By magnifying and
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Fig. 17.5. The orbit diagram of Fµ with 0 ≤ µ ≤ 4 plotted horizontally.

Fig. 17.6. The orbit diagram of Fµ with 3 ≤ µ ≤ 4.

Fig. 17.7. The orbit diagram of Fµ with 3.825 ≤ µ ≤ 3.86.
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recomputing these portions of the orbit diagram, it is easily observed that,
as µ increases, the same phenomenon occurs: Fµ undergoes another sequence
of period-doubling bifurcations. This is shown in Fig. 17.7, where we display
the period 3 regime 3.825 ≤ µ ≤ 3.86. Note that the only visible orbit for
many µ-values is an attracting orbit of period 3, and that this orbit undergoes
a sequence of period-doublings.

While this section has been for the most part heuristic, we have managed
to introduce the important notion of renormalization. The operator R allows
us to examine the second iterate of a given map on the same scale as the
original map. R acts like a microscope, allowing us to view phenomena that
occur for f2 in the same detail as for f . One might naturally ask what
happens in the limit when R is applied over and over again to a given map.
This is, in fact, the ultimate goal of renormalization group analysis from
physics and leads to the important concept of universality. These ideas are
beyond the scope of this text; we will, however, discuss this operator from
the point of view of symbolic dynamics. This necessitates the introduction of
a new and more powerful version of symbolic dynamics, the kneading theory,
which is the topic of the next section.

Exercises

The Adding Machine (Misiurewicz.) The purpose of this set of exercises
is to construct and analyze a continuous map of I which has exactly one
periodic point of period 2j for each j and no other periodic points. The
construction of the map relies on the notion of the double of a map, a topic
discussed in §1.10. Start with f0(x) = 1/3. Let f1(x) denote the double of
f0, i.e., f1(x) is obtained from f0 by the following procedure:

1. f1(x) = 1
3f0(3x) + 2

3 if 0 ≤ x ≤ 1/3.
2. f1(2/3) = 0; f1(1) = 1/3.
3. f1 is continuous and linear on the intervals 1/3 ≤ x ≤ 2/3 and

2/3 ≤ x ≤ 1.
That is, the graph of f1 is obtained from f0 as shown in Fig. 17.8.

Inductively, we define fn+1(x) to be the double of fn(x). See Fig. 17.9.
Finally, let F (x) = lim

n→∞fn(x).

1. Prove that fn+α(x) = fn(x) for all α > 0 and x ≥ 1/3n. Conclude that
if we define F (0) = 1, then F (x) is a well-defined continuous map of I.

2. Prove that fn(x) has a unique periodic orbit 2j for each j ≤ n. Prove
that each of these periodic points is repelling, if j < n.
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Fig. 17.8. The double of f0.

Fig. 17.9. The graph of f2 and f3.

3. Prove that fn(x) has no other periodic points.
4. Prove that F (x) has a unique periodic orbit of period 2j for each j and
no other periodic points. Show that this periodic orbit is repelling.

Recall from Example 5.5 the construction of the Cantor Middle-Thirds
set. Let A0 = (1

3 , 2
3) be the middle third of the unit interval I. Let I0 = I−A0.

Let A1 = (1
9 , 2

9) ∪ (7
9 , 8

9) be the middle third of the two intervals in I0. Let
I1 = I0 − A1. Inductively, let An denote the middle third of the intervals in
In−1 and let In = In−1 − An. Finally, let

I∞ =
⋂

n≥∞
In.

I∞ is the classical middle-thirds Cantor set.
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5. Show that the periodic points of period 2j for F lie in the union of
intervals which comprise Aj .
6. Prove that F (In) = In.
7. Prove that if x ∈ An and x is not periodic, then there exists k > 0 such
that F k(x) ∈ In.
8. Prove that I∞ is invariant under F .
9. Prove that, if x �∈ I∞ and x is not periodic, then the orbit of x tends to
I∞ or eventually lies in I∞.

Thus all of the non-periodic points for F are attracted to the set I∞.
Thus, to understand the dynamics of F , it suffices to understand the dy-
namics of F on I∞. For each point p ∈ I∞, we attach an infinite sequence of
0’s and 1’s, S(p) = (s0s1s2 . . .), according to the rule: s0 = 1 if p belongs to
the left component of I0; s0 = 0 if p belongs to the right component. Note
that this is slightly different from our coding for the quadratic map! Now
p belongs to some component of In−1, and In is obtained by removing the
middle third of this interval. Therefore we may set sn = 1 if p belongs to
the left hand interval in In and sn = 0 otherwise.

Let Σ2 be the set of all sequences of 0’s and 1’s. Define the adding
machine A: Σ2 → Σ2 by A(s0s1s2 . . .) = (s0s1s2 . . .)+(100 . . .) mod 2, i.e., A
is obtained by adding 1 mod 2 to s0 and carrying the result. For example,
A(110 110 . . .) = (001 110 110 . . .) and A(111 . . .) = (000 . . .).
10. Let d be the usual distance on Σ2 (see Proposition 6.1). Prove that
S: I∞ → Σ2 is a topological conjugacy between F on I∞ and A on Σ2.
11. Prove that A has no periodic points.
12. Prove that every orbit of A is dense in Σ2.
Since Σ2 has no proper closed invariant subsets under A, Σ2 is an example
of a minimal set .

§1.18 THE KNEADING THEORY

In previous sections, we have shown how symbolic dynamics may be used
to understand completely the dynamics of certain quadratic maps. When µ
is sufficiently large or when µ = 3.839, we have seen that all of the interesting
dynamics of Fµ(x) = µx(1 − x) occurs on a Cantor set. The map on this set
is equivalent to the shift map or a subshift of finite type. For other values
of the parameter, the situation is more complicated. For example, the maps



140 ONE-DIMENSIONAL DYNAMICS

F4(x) = 4x(1 − x) and Qc(x) = x2 + c where c ≈ −1.543689 both have
intervals on which the map is chaotic (see Examples 8.9 and 11.13).

One difference between these two pairs of examples is the behavior of the
critical point under iteration. In the case of Fµ when µ > 4, the orbit of the
critical point tends to −∞, whereas it tends to an attracting periodic orbit
when µ = 3.839. In the latter two examples, the critical point eventually
lands on a repelling fixed point. Thus, in some sense, the orbit of the critical
point determines the dynamics of the map. Our goal in this section is to
make this statement precise. We will introduce a more elaborate version of
symbolic dynamics, the kneading theory, which keeps track of the orbit of
the critical point and thereby allows us to handle many of the additional
complications. The kneading theory also enables us to understand on a
symbolic level the transition from simple to chaotic dynamics which was
described heuristically in the previous section.

Definition 18.1. Let f : I → I. The map is unimodal if
1. f(0) = f(1) = 0.
2. f has a unique critical point c with 0 < c < 1.

Clearly, unimodal maps are increasing on the interval [0, c) and decreas-
ing on (c, 1]. The quadratic map Fµ(x) = µx(1−x) is unimodal for 0 < µ ≤ 4,
as is Sλ(x) = λ sin(πx) for 0 < λ < 1. See Fig. 18.1. For the remainder of
this section, we will work with a fixed unimodal map f .

Note that, for a unimodal map, the orbit of the critical point is trapped in
the unit interval. It cannot escape to −∞ as in the case of Fµ(x) = µx(1−x)
with µ > 4. But there are many other possible fates for this orbit. To
highlight the role of the critical point, we will extend slightly our definition
of the itinerary of a point by adding a third symbol “C.”

Definition 18.2. Let x ∈ I. The itinerary of x under f is the infinite
sequence S(x) = (s0s1s2 . . .) where

sj =




0 if f j(x) < c
1 if f j(x) > c
C if f j(x) = c.

Most important for us will be the itinerary of the critical point.
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Fig. 18.1. The graph of a unimodal map.

Definition 18.3. The kneading sequence K(f) of f is the itinerary of f(c),
i.e., K(f) = S(f(c)).

Example 18.4. If f(x) = F4(x) = 4x(1 − x), then c = 1/2, f(c) = 1, and
f j(c) = 0 for all j > 1. Hence

K(f) = (1000 . . .).

If f(x) = F2(x) = 2x(1 − x), then c = 1/2 and f j(c) = c for all j. Hence

K(f) = (CCC . . .).

Here the overbar means that the given symbol or set of symbols is repeated
ad infinitum.

There are many possible itineraries for a unimodal map, but there are
some restrictions. For example, if sj = C, then we must have sj+k = αk,
where

K(f) = (α1α2α3 . . .).

We call a sequence regular if sj = 0 or 1 for all j, i.e., sj �= C for
any j. Unimodal maps which feature any given regular sequence may be
constructed, but not all sequences need occur in a given map. In fact, a
unimodal map may have very few itineraries.

Example 18.5. Let f(x) = Fµ(x) = µx(1 − x) where 1 < µ < 2. From
graphical analysis (see §1.5), we see that the only itineraries for this map are

(000 . . .)
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(1000 . . .)

(C000 . . .).

Example 18.6. When 2 < µ < 3 in the above example, there are more
possible itineraries:

(C111 . . .)

(000 . . .)

(111 . . .)

(0 . . . 0 111)

(0 . . . 0C111)

as well as all of the above preceded by a 1. In the last two sequences, there
is an arbitrary but finite number of zeroes.

One may also easily enumerate the possible sequences for µ = 2, µ = 3,
and the case of the attracting period two orbit when µ is slightly larger than
3. See Exercise 1.

We note that, although Fµ has a single attracting fixed point for all µ
with 1 < µ < 3, the number of possible sequences has changed. The change
occurs at µ = 2 where the critical point is itself periodic, i.e., the kneading
sequence is (CCC . . .). The case of a periodic kneading sequence will add
complications below for precisely this reason.

We now define an ordering ≺ on the set of itineraries. Let s = (s0s1s2 . . .)
and t = (t0t1t2 . . .). We say that s and t have discrepancy n if si = ti
for 0 ≤ i < n but sn �= tn. Let τn(s) denote the number of 1’s among
s0, s1, . . . , sn. This number is important to us for the following reason. The
sign of the derivative of fn at x governs the local dynamics near x. Note
that f ′(x) is negative whenever x ∈ (c, 1]. Hence, by the Chain Rule, the
number of 1’s in the itinerary of x governs the sign of (fn)′(x) (provided
f ′(f i(x)) �= 0 for all i).

We will define the ordering on sequences inductively. To begin, we set
0 < C < 1.

Definition 18.7. Suppose s and t have discrepancy n. We say s ≺ t if
either

a. τn−1(s) is even and sn < tn
b. τn−1(s) is odd and sn > tn.
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Example 18.8. The above definition implies

(0101 . . .) ≺ (010C . . .) ≺ (0100 . . .)

(110 . . .) ≺ (11C . . .) ≺ (111 . . .).

This ordering, while somewhat cumbersome, is nevertheless reflected on
the real line. More precisely, if x, y ∈ I and x < y, then S(x) � S(y).
Conversely, if S(x) ≺ S(y), then x < y. Before proving this, let us check this
ordering in a simple example.

Example 18.9. Let f(x) = Fµ(x) where 2 < µ < 3. Using Example 18.6,
we see that

(000 . . .) ≺ (C111 . . .) ≺ (111 . . .) ≺ (1C111 . . .) ≺ (1000 . . .).

Between (000 . . .) and (C111 . . .), there are infinitely many itineraries of the
form:

�n = (0 . . . 0︸ ︷︷ ︸
n 0′s

111 . . .)

�′
n = (0 . . . 0︸ ︷︷ ︸

n 0′s

C111 . . .).

One may check easily that

(000 . . .) ≺ . . . ≺ �′
2 ≺ �2 ≺ �′

1 ≺ �1 ≺ (C111 . . .).

Preceding these orbits by a 1 reverses the ordering:

(1C111 . . .) ≺ 1�1 ≺ 1�′
1 ≺ 1�2 ≺ 1�′

2 ≺ . . . ≺ (1000 . . .).

We now show that the ordering on itineraries is the same as that on the
real line.

Theorem 18.10. Let x, y ∈ I.
1. If S(x) ≺ S(y), then x < y.
2. If x < y, then S(x) � S(y).

Remark. The equality in part two cannot be removed, as the existence of
an attracting periodic point usually implies the existence of an interval of
points in the real line with the same itinerary.
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Proof. We prove part 1. Part 2 then follows immediately. Let S(x) =
(s0s1s2 . . .) and S(y) = (t0t1t2 . . .). We use induction on n, where n is the
discrepancy of S(x) and S(y). If n = 0, the result is clear, since 0 < C < 1,
which is precisely the order on the real line. So we assume that the result is
true for sequences with discrepancy n − 1 and prove it for discrepancy n.

We first apply f to x and y. Using the shift, we have

S(f(x)) = (s1s2s3 . . .)

S(f(y)) = (t1t2t3 . . .).

There are three cases, s0 = 0, C, and 1. If s0 = 0, then S(f(x)) ≺ S(f(y))
since we have not changed the number of 1’s before the discrepancy. By
induction, we have f(x) < f(y). But since f is increasing on [0, c), it follows
that x < y as well. If s0 = 1, then S(f(x)) � S(f(y)) since there is one less
1 among s1, . . . , sn. Hence f(x) > f(y) by induction. But then x < y since
f decreases on (c, 1]. Finally, if s0 = C, it follows that x = y = c.

q.e.d.
We say that a sequence s is admissible for f if there exists x ∈ I with

S(x) = s. Let Σf denote the set of all possible f -admissible sequences. Our
goal is to find a method whereby we may determine all sequences in Σf .
The key to this is the kneading sequence. The kneading sequence gives one
necessary condition which must be satisfied by any sequence in Σf . Since
f(c) is the maximum of f , it must be true that fn(x) ≤ f(c) for all x ∈ I
and all n ≥ 1. Consequently, if s ∈ Σf , then σn(s) � K(f) for all n ≥ 1.
This condition is not quite sufficient, as the following example shows.

Example 18.11. Let f(x) = F4(x) = 4x(1 − x). Note that f(1) = 0 so
that K(f) = S(1) = (1000 . . .). The only preimage of 1 is c, so that the
only admissible sequence which is a preimage of (1000 . . .) is (C1000 . . .).
Hence sequences of the form t = (0 . . . 01000 . . .) with n initial 0’s are not
admissible. However, σi(t) ≺ K(f) for i �= n and σn(t) = K(f).

The kneading sequence may be used to give a sufficient condition which
holds in certain cases, at least.

Theorem 18.12. Suppose f is unimodal and c is not periodic. If t is a
sequence which satisfies σn(t) ≺ K(f) for all n ≥ 1, then there exists x ∈ I
with S(x) = t. That is, t ∈ Σf .

Proof. If t = (000 . . .) or (1000 . . .), then we are done, since S(0) = (000 . . .)
and S(1) = (1000 . . .). So we may assume that t �= (000 . . .) or (1000 . . .).
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Define
Lt = {x ∈ I|S(x) ≺ t}
Rt = {x ∈ I|S(x) � t}.

We will show below that both Lt and Rt are open in I. Since 0 ∈ Lt and
1 ∈ Rt (recall: t �= (000 . . .) or (1000 . . .) ), it follows that both Lt and Rt

are non-empty. Since Lt ∩ Rt = ∅, it thus follows that there is a non-empty
closed set in I with itinerary t. This completes the proof, except for the
openness result.

We will only show that Lt is open; the proof for Rt is similar. We begin
with the following observation. Let s = (s0s1s2 . . .) and suppose si �= C for
i = 0, . . . , n. Then {x ∈ I|si(x) = si for i = 0, . . . , n} is open in I. Indeed,
if S(y) = s, there are open neighborhoods Wi of y such that f i(Wi) lies on
the same side of c as f i(y). The intersection of these neighborhoods yields a
neighborhood of y with the desired property.

Now let z ∈ Lt and suppose S(z) = s = (s0s1s2 . . .) ≺ t. Since s �= t, s
and t have discrepancy n, for some n ≥ 0, i.e., sn �= tn. There are then two
cases: tn = C and tn �= C. If tn = C, then it follows that σn+1(t) = K(f)
which contradicts our assumption. Hence we must have tn �= C. Let us
assume that tn = 1; the case tn = 0 is similar. If sn = 0, then we again
invoke our preliminary observation to conclude that Lt is open.

Thus the only remaining possibility is that sn = C; that is, K(f) =
(sn+1, sn+2, sn+3, . . .). In this case, there exists α > 0 such that sn+α �= tn+α,
for otherwise we would have σn+1(t) = (sn+1, sn+2, sn+3, . . .) = K(f). Since
c is not periodic, we must have sn+i �= C for all i > 0. Let W be the
neighborhood of z such that, if x ∈ W , then

S(x) = (s0 . . . sn−1 ∗ sn+1 . . . sn+α . . .)

where ∗ may be 0, 1, or C. That is, W consists of all points whose itineraries
agree with that of z up to the (n + α)-entry, except possibly in the nth slot.
Hence W is open. Clearly, we have

(s0 . . . sn−1 ∗ . . .) � (s0 . . . sn−1tn . . .) = (t0 . . . tn−1tn . . .)

since s ≺ t. Consequently, if x ∈ W , then S(x) ≺ t and we are done.
q.e.d.

Remarks.
1. The condition that σi(s) ≺ K(f) for i ≥ 1 cannot be changed to i ≥ 0.
Obviously, (1000 . . .) � t for any sequence t, and S(1) = (1000 . . .) so that
this sequence is admissible.
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2. The assumption that c not be periodic can be eliminated. To accomplish
this, however, we must exclude one additional sequence. Suppose K(f) =
(α1 . . . αnCα1 . . . αnC . . .). If there is an even number of 1’s among the αi’s
then the sequence (α1 . . . αn 0 α1 . . . αn0 . . .) is less than K(f). However,

{x|S(x) = α1 . . . αn 0 α1 . . . αn0 . . .}

is not closed in I. This contradicts the results in the proof of Theorem
18.12. As an example, note that if f(x) = F2(x) = 2x(1 − x), then K(f) =
(CCC . . .). Every point in [0, c) has itinerary (000 . . .), so that

{x|S(x) = (000 . . .)}

is not closed.
Thus we must modify the hypotheses of Theorem 18.12 by assuming that

σk(t) ≺ (α1 . . . αn 0 α1 . . . αn 0 . . .) for all k ≥ 1. If the number of 1’s among
the αi’s is odd, then we must assume that σn(t) ≺ (α1 . . . αn 1 α1 . . . αn 1 . . .).
With this proviso, Theorem 18.12 then holds in case c is periodic. We leave
the details to the reader (see Exercise 2).

Exercises

1. Let Fµ(x) = µx(1 − x). List all possible itineraries for Fµ when µ = 2
and µ = 3.
2. Prove Theorem 18.12 in the case where c is periodic, incorporating the
exclusions mentioned in Remark 2 above.
3. Renormalization and the Kneading Theory. Recall that in the last sec-
tion we defined the renormalization Rf of a unimodal map f . Rf was defined
if f admitted a fixed point p with f ′(p) < 0. Let K(f) = (α1α2α3 . . .).

a. Show that if Rf is defined and is a unimodal map, then K(f) =
(1α2 1α4 1α6 . . .), i.e., α2n+1 = 1 for all n.

b. Define α̂j to be 0 if αj is 1 or 1 if αj is 0. So α̂j �= αj . Show that
K(Rf) = (α̂2α̂4α̂6 . . .).

Thus we may define a renormalization operator R on regular sequences by
defining R(α1α2α3 . . .) = (α̂2α̂4α̂6 . . .). Intuitively, this operator eliminates
every odd entry in the sequence and changes every even entry.

c. Assuming that both Rf and R2f are unimodal maps, show that
α2 = α6 = α10 = . . . = 0, i.e., that α4n+2 = 0.

d. Assuming that Rif is a unimodal map for i ≤ n, prove that the
entries αj are determined, where j = 2ik + 2i−1 for i ≤ n.
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e. Conclude that all entries of K(f) are determined if Rif is a unimodal
map for all i. What is K(f)?

We now assume that Rif is a unimodal map for all i. For a repeating se-
quence (s0 . . . sn s0 . . . sn . . .) we will adopt the shorthand notation (s0 . . . sn).
We introduce some special repeating sequences

τ0 = (1)

τ1 = (10)

τ2 = (1011)

τ3 = (10111010).

Inductively, τj+1 is obtained from τj by doubling τj and changing the last
entry.

f. Prove that τj has period 2j .
g. Prove that R(τj+1) = τj if j ≥ 0.
h. Let τ∞ = lim

j→∞
τj . τ∞ is not a repeating sequence. Prove that

R(τ∞) = τ∞, so that τ∞ is a “fixed point” for the renormalization
operator on sequences.

i. Prove that if Rif is a unimodal map for all i, then K(f) = τ∞.
Thus the set of unimodal maps which can be renormalized infinitely often all
share the same kneading sequence τ∞. We will meet this sequence as well as
the τj ’s again when we discuss the genealogy of periodic points in the next
section.

§1.19 GENEALOGY OF PERIODIC POINTS
OF UNIMODAL MAPS

The kneading theory provides a powerful tool for studying the dynamics
of a unimodal map. In this section, we will investigate the ramifications of
this theory on the structure of the set of periodic points of a unimodal map.
When such a map also has negative Schwarzian derivative, we will see that
there are restrictions on the number and type of periodic points that can
arise. In particular, we will give an almost complete answer to the question
we asked earlier: how do maps like the quadratic map Fµ(x) = µx(1 − x)
make the transition from simple to chaotic dynamics.
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Unlike the quadratic map Fµ with µ large where there is a unique peri-
odic point corresponding to any repeating itinerary, the situation for general
unimodal maps is quite different. There may be more than one periodic
point which shares the same itinerary. For example, when 1 < µ < 2, Fµ has
two fixed points, both of which have itinerary (000 . . .). Moreover, whenever
f has an attracting periodic orbit, there is generally an entire interval of
points which share the same itinerary. However, as the following Theorem
shows, there is always at least one periodic point which corresponds to a
given repeating itinerary.

Theorem 19.1. Let s = (s0 . . . sn−1 s0 . . . sn−1 . . .) be an f-admissible re-
peating sequence which satisfies σi(s) ≺ K(f) for all i ≥ 1. Then there exists
a periodic point p of period n, and any periodic point with S(p) = s has period
n or 2n.

Proof. Let us assume that K(f) is not repeating. As in the proof of Theorem
18.12, special arguments are necessary in this case for one of the admissible
sequences. We leave the details to the reader (see Exercise 1). Since σi(s) ≺
K(f) for all i, Theorem 18.12 shows that

J = {z ∈ I|S(z) = s}

is a non-empty closed interval in I. Observe that fn(J) ⊂ J since all points
in fn(J) have itinerary s as well.

Now if J is a single point, it follows that this point is periodic and has
the desired itinerary. If J = [a, b] with a �= b, then we argue as follows.
If x ∈ [a, b], then f i(x) �= c for any i since S(f i+1(x)) = σi+1(s) ≺ K(f).
Consequently, (fn)′(x) �= 0 for any x ∈ [a, b]. Thus fn either increases or
decreases on J . Moreover, fn preserves the endpoints of J . This follows
from the fact that, if fn(a) belongs to the interior of (J), then there exists
an open interval N about a having the following properties. If x ∈ N then

1. f i(x) �= c for any i < n
2. fn(x) ∈ J .

Consequently, all points in N have itinerary s and so J is larger than [a, b],
contrary to our assumption.

If fn is increasing on J , it therefore follows that both a and b are periodic
with period n and itinerary s. If fn is decreasing, it is clear that a and b
have period 2n with fn(a) = b and fn(b) = a. By the Intermediate Value
Theorem, there exists z between a and b with fn(z) = z. This completes the
proof.

q.e.d.
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We remark that this result is still true under the slightly weaker hypoth-
esis that σi(s) � K(f). In this case {z ∈ I|S(z) = s} need no longer be a
closed set. We also note that the case of a periodic point with period 2n but
whose itinerary repeats with period n can actually happen. Indeed, in the
quadratic family, just after the first period doubling, both period two points
lie close to the fixed point which spawned them. Hence their itineraries are
both (111 . . .).

If we assume in addition that a unimodal map has negative Schwarzian
derivative, then this puts strong restrictions on the number of periodic points
which can share the same itinerary.

Corollary 19.2. Suppose Sf < 0. Let s be a non-zero repeating sequence
with period n which satisfies σi(s) � K(f) for all i. Then there exists at
most two periodic orbits with itinerary s.

Proof. By the previous Theorem, any periodic point with itinerary s is fixed
by f2n. Hence we suppose that there are three distinct periodic orbits with
itinerary s. For simplicity, let us assume that each of these orbits actually
has period n. The more general case is handled similarly (see Exercise 2).

Let x1 < x2 < x3 be three consecutive points fixed by fn and with the
same itinerary. There cannot be a critical point for fn in [x1, x3], for all points
in this interval must have itinerary s by our ordering. By Proposition 11.3,
Sfn < 0. If two of the xi are attracting (even weakly attracting from one
side), then the proof of Theorem 11.4 shows that they must either attract
a critical point of f or else have infinite basin of attraction. This latter
possibility cannot occur, since 0 < xi < 1 and neither 0 nor 1 lie in the basin
of attraction. But then both of the points must attract a critical point of f ,
which is again impossible since f is unimodal.

The only other possibility is that one of the xi is attracting (from both
sides). Clearly, this point must be x2. Then, however, (fn)′ has a posi-
tive local minimum between x1 and x3. This contradicts Lemma 11.5 and
establishes the result.

q.e.d.

Corollary 19.3. Suppose Sf < 0. Let s = (s0 . . . sn−1s0 . . . sn−1 . . .) be a
regular repeating sequence with

In−1(s) =
n−1∑
i=0

si

an odd number and σi(s) � K(f) for all i. Then
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1. There exists a unique periodic point zs for f of period n and with
itinerary s.

2. If, in addition, (fn)′(zs) < −1 and K(f) = σi(s) for some i, then
there exists a pair of periodic points of period 2n for f which has
itinerary s as well .

Proof. For part 1, we suppose that x is a periodic point of period n with
itinerary s. Since

∑n−1
i=0 si is odd, it follows that (fn)′(x) < 0. Consequently,

if f admits two periodic points with itinerary s, not both can have period n.
This completes the proof of part 1; the second part is left to the reader (see
Exercise 3).

q.e.d.
A good illustration of this Corollary is provided by the quadratic map

Fµ. For 1 < µ < 2, this map has 2 fixed points, both with itinerary (000 . . .).
At µ = 2, one of these fixed points becomes the critical point. Thereafter, for
2 < µ < 3, this fixed point has negative derivative and a different itinerary
(111 . . .). As µ increases through 3, a period-doubling bifurcation occurs.
As we noted above, just after µ = 3, the new period two orbit shares the
itinerary (111 . . .).

Now let us turn to the question of how a unimodal map progresses from
finitely many to infinitely many distinct periodic points. To answer this,
we combine our previous results on bifurcation theory (§1.12) and negative
Schwarzian (§1.11) with the kneading theory. The result is a nearly complete
topological or qualitative picture of the transition from simple to complicated
dynamics.

For the moment, we will deal with the periodic point structure of a
fixed unimodal map f . Later we will turn to families of such maps. As
we will deal with regular repeating itineraries in this section, we will drop
the “tail” of the itineraries and work with a finite sequence of 0’s and 1’s
instead. That is, (s0s1 . . . sn) will denote the infinite repeating itinerary
(s0s1 . . . sns0 . . . sn . . .).

Definition 19.4. Let s be a repeating itinerary. Let M(s) denote the
maximal sequence in the orbit of s, i.e., M(s) = σj(s) where σj(s) � σi(s)
for all i.

We need some notation. Let s = (s0 . . . sn) and t = (t0 . . . tk) be re-
peating sequences. We denote the concatenation of these two sequences by
s · t = (s0 . . . sn t0 . . . tk). We also write ŝ = (s0 . . . sn−1ŝn) where ŝn = 1 if
sn = 0 or ŝn = 0 if sn = 1. That is, ŝ is the same sequence as s, except that
the last entry has been changed.
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We will consider some special repeating sequences. Define

τ0 = (1)
τ1 = (10)
τ2 = (1011)
τ3 = (1011 1010)

and, inductively,
τj+1 = τj · τ̂j.

Finally, we set
τ∞ = lim

n→∞ τn

= (1011 1010 1011 1011 . . .).

Note that τ∞ is a non-repeating sequence.

Proposition 19.5.
1. τj has prime period 2j.
2. τj has an odd number of 1’s.
3. τ0 ≺ τ1 ≺ τ2 ≺ . . . .

Proof. The proofs of 1 and 2 are straightforward. See Exercise 18.3. For 3,
we write

τj = (s0 . . . sαν).

If ν = 1, then by 2, there is an even number of 1’s among (s0, . . . , sα).
Consequently

τj � τ̂j = τj−1 · τj−1 = τj−1.

The argument is similar if ν = 0.
q.e.d.

The τj ’s play a special role in the transition to chaos: they are always
the first periodic orbits to appear in any family of unimodal maps.

Proposition 19.6. M(τj) = τj .

Proof. We use induction on j. The cases j = 0 and j = 1 are clear. Let us
assume that M(τi) = τi for i = 0, 1, . . . , j − 1. We observe that

τ̂j = τj−1 · τj−1 = M(τj−1) = τj−1 ≺ τj
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by the previous proposition. Now suppose that M(τj) = σi(τj) for some
i �= 0. If 1 ≤ i < 2j−1, then we have

σi(τj) = σi(τj−1) · σi(τ̂j−1) ≺ τj−1 · τ̂j−1 = τj .

Similarly, if 2j−1 + 1 ≤ i < 2j , we may write � = i − 2j−1 and we have

σi(τj) = σ�(τ̂j−1) · σ�(τj−1) ≺ τj−1 · τ̂j−1 = τj

since
M(τ̂j−1) = M(τj−2) = τj−2 ≺ τj−1.

Finally, if i = 2j−1, we have

σi(τj) = τ̂j−1 · τj−1 ≺ τj−1 · τ̂j−1

since τ̂j−1 ≺ τj−1 as we observed above.
q.e.d.

The next proposition shows that the periodic points with itinerary τj

occur before periodic points with other itineraries for a unimodal map.

Proposition 19.7. Let t be any regular repeating sequence with t �= (0) or
τj for any j. Then M(t) � τj .

Proof. Since t �= (0) or (1) = τ0, it follows that there exists i ≥ 0 such that

σi(t) = (10 . . .) � (1) = τ0.

Consequently, M(t) � τ0.
Now suppose that

τj−1 ≺ M(t) ≺ τj.

We have
τj−1 = τj−1 · τj−1 ≺ M(t) ≺ τj−1 · τ̂j−1.

Since the only discrepancy in the above sequences occurs in the 2j-th slot,
it follows that M(t) = τj−1 or M(t) = τj . This contradicts our assumption
and completes the proof.

q.e.d.
We turn now to the consideration of families of unimodal maps fλ,

where the maps depend smoothly on the parameter λ. That is, the function
G(x, λ) = fλ(x) is C∞ in both variables.
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Definition 19.8. Let fλ be a family of unimodal maps with λ0 ≤ λ ≤ λ1.
fλ is called a transition family if

1. fλ0(x) ≡ 0 for all x ∈ I.
2. When λ = λ1, K(fλ) = (1000 . . .).
3. Sfλ < 0 for all λ > λ0.

Remarks.
1. Transition families are called full families by some authors.
2. Condition 1 may be relaxed; all we really need is that K(fλ) = (000 . . .).

Example 19.9. The quadratic family Fµ(x) = µx(1 − x) forms a transition
family for 0 ≤ µ ≤ 4. Also, Sλ(x) = λ sin(πx) forms a transition family for
0 ≤ λ ≤ 1.

Conditions 1 and 2 above guarantee that a transition family becomes
dynamically complex as λ increases: there are no dynamics at all when
λ = λ0, while fλ1 has at least one periodic point corresponding to any regular
repeating itinerary. This last statement follows immediately from Theorem
19.1 and the kneading theory of §1.17.

Our previous results allow us to say more. For each j, as long as K(fλ) �
τj , there exists a unique periodic point in [0, 1] of period 2j and with itinerary
τj . Let us denote this point by γj(λ). Note that, since

(f2j
)′(γj(λ)) < 0,

the bifurcation theory of §1.12 guarantees that the γj(λ) depend continuously
on λ. If we plot the bifurcation diagram for the family fλ, it follows that the
γj(λ) must lie on a continuous curve in the x-λ plane.

The domain of definition of γj can be extended somewhat. If K(fλ) = τj

and
(f2j

)′(γj) < −1,

then there exists a unique periodic orbit of period 2j+1 for f which shares
the itinerary τj. See Corollary 19.3. We denote the largest of these points
by γj+1(λ). Thus γj+1(λ) is defined for all λ for which K(fλ) � τj and
(f2j

λ )′(γj) < −1. Since (f2j+1

λ )′(γj+1) �= 1 for all λ (Exercise 4), it follows
that γj+1(λ) is continuous for these values of λ as well.

Remark. There is an intermediate kneading sequence ν between τjτj and
τ̂j+1 = τj τ̂j for which the last entry is C. That is, if K(fλ) = ν, the crit-
ical point is periodic with period 2j+1. If we define γj+1(λ) = fλ(c) when
K(fλ) = ν, then γj+1 is continuous here as well (Exercise 5).
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Fig. 19.1. A possible bifurcation diagram for a transition family.

Finally, we note that γj+1(λ) → γj(λ) as λ approaches a value for which
(f2j

λ )′(γj) = −1. That is, γj undergoes a period-doubling bifurcation at this
value of λ (Exercise 6). This means that the bifurcation diagram for fλ must
be at least as complicated as that of Fig. 19.1.

Thus we see that a transition family has virtually no choice regarding
the transition to chaotic dynamics. Such a family must follow the period-
doubling route, at least until infinitely many periodic points have been born.
Thus the qualitative picture of renormalization that we described in §1.17 is
at least qualitatively correct.

Remark. Our assumptions do not eliminate the birth and subsequent death
of one of the periodic points. This would happen if the kneading sequence of
fλ first increased, then decreased, and finally increased again. The resulting
bifurcation diagram is depicted in Fig. 19.2. Recent research has shown that
this pathology does not occur in the quadratic family Fµ(x) = µx(1 − x).

This is just the beginning of a long and detailed story. There are many
other periodic points in a transition family besides the γj ’s that we have
discussed. However, the mechanism by which these other periodic points
arise is similar to that described above. One may describe completely the
“genealogy” of any periodic point in a transition family—where it is “born,”
which sequences are its (period-doubling) “ancestors,” and which sequences
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Fig. 19.2. The birth and death of a fixed point
as λ increases in a transition family.

are its“descendants.” We relegate these facts to the exercises (Exercises 9-
13) but recommend them to the reader as a nice method to tie together many
of the ideas in this entire chapter.

To summarize, a pair of periodic orbits is born in a saddle node bifurca-
tion. This bifurcation may of course be degenerate, but at least two periodic
orbits are produced. One of these orbits eventually becomes repelling with
derivative > 1; the other orbit becomes attracting and eventually attains
negative derivative. Thereafter, the period-doubling story unfolds. Infinitely
many orbits successively bifurcate away as in the case of the γj , and all persist
until the transition family reaches the stage where the map is topologically
conjugate to the shift.

Exercises

1. Prove Theorem 19.1 in case K(f) is repeating. Also show that, if the
kneading sequence of a unimodal map f is repeating, then there exists a
periodic point for f whose itinerary is the kneading sequence.
2. Prove Corollary 19.2 in case two of the three periodic orbits are assumed
to have period 2n.
3. Suppose zs is periodic with period n and itinerary s. Suppose (fn)′(zs) <
−1 and K(f) = s. Prove that there exists a pair of periodic points of period
2n for f which has itinerary s.

In the next three exercises, suppose that fλ is a transition family of maps.

4. Suppose K(fλ) = τj and (f2j
)′(γj) < −1. By the results of this section,
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the periodic point γj+1(λ) exists. Prove that

(f2j+1
)′(γj+1) �= 1.

5. Prove that γj+1(λ) is continuous at the λ-value for which γj+1(λ) =
fλ(c).

6. Prove that γj+1(λ) approaches γj(λ) as λ approaches a value for which
(f2j

)′(γj) = −1.

The following exercises describe the “genealogy” of any periodic point in a
transition family by describing how the periodic point is “born” and which
sequences are “related” to it.

7. Let s = (s1 . . . sn) be any regular repeating sequence of period n. Prove
that there exists a continuous curve γs(λ) defined for λs ≤ λ ≤ λ1 such that
fn
λ (γs(λ)) = γs(λ) and S(γs(λ1)) = s.

8. Prove that γs(λ) may be extended to a point λs at which

(fn
λs

)′(γs(λs)) = 1.

The parameter value λs is called the “birthplace” of s. We now assume that

M(s) = s and that
n∑

i=1
si is odd.

9. Prove that if s is of the form s = uû, then
a. u � û.
b. γs(λ0) is born in a period-doubling bifurcation at λ = λs along the

family γu(λ).
c. Let t = ûu. Prove that limλ→λs

γt(λ) = γs(λs) so that t and s are
related. The sequence u is called an “ancestor” of s and t. Similarly,
s and t are “descendants” of u.

10. Using the notation of the previous exercise,
a. Prove that, if s is not of the form uû for some sequence u, then γs(λ)

is born in a saddle node bifurcation at λ = λs.
b. Let t = ŝ. Prove that

lim
λ→λs

γt(λ) = γs(λs).

Thus ŝ is related to s via this bifurcation.
11. List the six maximal period 5 orbits. Which of these orbits are related?
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12. Prove that there are 9 orbits of prime period 6. Which of these orbits
are born in saddle nodes and which are born in period doublings?
13. Prove that there are 30 orbits of prime period 8. Identify those that
are related to the repeating sequence (1) via period doublings. Which others
arise out of period doublings?

The following exercises apply to the family of tent maps of the form

Tµ(x) =




µx 0 ≤ x ≤ 1/2

µ(1 − x) 1/2 < x ≤ 1.

14. Prove that Tµ has a unique fixed point and no other periodic points if
0 < µ < 1. Prove that Tµ has periodic points of period 2j for each j if µ > 1.
15. Consider T√

2. Show that the “critical point” x = 1/2 is eventually
fixed for this map. Prove that there is a subinterval of [0, 1] on which T 2√

2
is

topologically conjugate to T2.
16. Prove that T√

2 has periodic points of period 2k for any k > 0, but no
periodic points of odd period > 1.
17. Find a value of µ for which the point 1/2 is a periodic point for Tµ of
period 3.
18. Prove that there is an interval on which T√

2 is chaotic.

FOR FURTHER READING:

There are a number of advanced texts in Dynamical Systems which ex-
tend or complement the material presented here. These texts also provide
good references to the current research literature. Among them are:

Collet, P. and Eckmann, J.-P. Iterated Maps of the Interval as Dynamical
Systems. Birkhäuser, Boston, 1980.

This text delves more deeply into the kneading theory than we do. It also
emphasizes the renormalization theory, and gives an overview of the work of
Feigenbaum in this area. It also summarizes the recent important work of
Guckenheimer, Misiurewicz, Jonker, Rand and others which aims at classi-
fying one-dimensional maps.

Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.
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As the title suggests, the scope of this text is much wider than Chapter One.
It is aimed primarily at graduate students, and stresses continuous dynamical
systems (vector fields) and applications. There is considerable overlap in
our treatment of bifurcations, circle maps, and the kneading theory, but
in general this text is most suitable for an advanced course in Dynamical
Systems.

We have emphasized discrete dynamical systems in this chapter. However,
many of the dynamical systems which occur in applications are continuous
systems, such as vector fields or ordinary differential equations. The following
texts provide introductory treatments of these systems, which should be more
accessible once the fundamental concepts of discrete dynamics are mastered.
All are suitable for advanced undergraduate and beginning graduate courses
in Dynamical Systems.

Hirsch, M. W., Smale, S., and Devaney, R. L. Differential Equations, Dy-
namical Systems, and Linear Algebra. Academic Press, New York, 2003.

Strogatz, S. Nonlinear Dynamics and Chaos. Perseus Press, 1994.

Robinson, C. Dynamical Systems. Boca Raton: CRC Press, 1995.

One major topic that we have omitted in this chapter is the Ergodic Theory
of one-dimensional maps. A quick introduction to a variety of topics in this
field is contained in the following text.

Sinai, J.G. Introduction to Ergodic Theory. Princeton University Press,
Princeton, New Jersey, 1976.

A book that presents the mathematics and computer algorithms for exper-
imenting with some of the material in this chapter at a level accessible to
students with a good high school mathematics background is:

Devaney, R.L. Chaos, Fractals, and Dynamics: Computer Experiments in
Mathematics. Addison-Wesley, Menlo Park CA, 1989.

An interesting pictorial approach to Dynamical Systems is contained in the
book:

Abraham, R., Gardini, L., and Mira, C. Chaos in Discrete Dynamical Sys-
tems. New York: Telos, 1997.
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Chapter Two

Higher Dimensional Dynamics

In this chapter, we investigate dynamical phenomena which are higher
dimensional in nature. In accordance with our desire to keep the presen-
tation as simple as possible, we will treat only two- and three-dimensional
dynamical systems. Higher dimensional systems are, of course, important
but there are relatively few dynamical phenomena that are currently under-
stood which occur in dimensions four or more and which are not already
present in dimensions two and three. Most of what we say goes over to
higher dimensions without any difficulty.

One of the main differences between higher dimensional systems and
those treated in the previous chapter is the possibility of both expansion and
contraction in the same invariant set. We will illustrate this with three impor-
tant examples whose dynamics will dominate most of this chapter. They are
the horseshoe map, the hyperbolic toral automorphisms and the attractors.
Each of these maps illustrates a different higher dimensional phenomenon,
but they all share several fundamental properties. The horseshoe map is the
higher dimensional analogue of the quadratic map (for large µ-values) which
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occupied so much of our attention in Chapter One. Here we see that the ad-
dition of both contracting and expanding directions in the same map presents
no additional difficulties; a minor modification to the symbolic dynamics of
Chapter One enables us to analyze these types of maps completely.

The hyperbolic toral automorphisms are quite different. They are chaotic
everywhere. Also the expansion and contraction occurs at every point in the
space, not just on a Cantor set. To handle this situation we introduce a
modified type of symbolic dynamics generated by a Markov partition.

Finally, attractors present another facet of higher dimensional dynamics.
Basically, an attractor is a set toward which most other points tend under
iteration. As we shall see, the dynamics on the attractor itself may be quite
chaotic, so that iteration of virtually any point eventually leads to seemingly
random behavior. Using the branched manifold construction of Williams, we
will nevertheless be able to describe this situation satisfactorily.

A number of themes which arose in Chapter One will return in slightly
different format in this chapter. For example, a new type of bifurcation
occurs in higher dimensions, namely the Hopf bifurcation. This bifurcation
occurs when the derivative at a fixed point is a rotation, i.e., the multipliers
are complex of modulus one.

As we mentioned above, the main difference between one- and higher
dimensional systems is the possibility of both expansion and contraction at
the same point in the latter case. We illustrate what this means for linear
maps in §2.2, when we introduce the notion of stable and unstable sets. Each
of the three main examples also features stable and unstable sets through
each point. So this sets the stage for the general concept of a stable and
unstable manifold, which we discuss in §2.6. Finally, in §2.9, we consolidate
many of these ideas in a section that consists almost entirely of Exercises.
All of these Exercises deal with a single family of maps of the plane, the
Hénon maps. As we will see, this family is the natural generalization of the
quadratic family that played such a prominent role in the previous chapter.

This chapter assumes a slightly more advanced mathematical background
on the part of the student than the previous chapter. The main new require-
ment is Linear Algebra. We assume throughout that the reader is famil-
iar with such concepts as linear transformations, matrices, eigenvalues, and
eigenvectors. As we work primarily in dimensions two and three, an elemen-
tary course in Linear Algebra which emphasizes these dimensions should be
sufficient. We also use a number of concepts from multi-dimensional calculus.
Many of these topics are reviewed in the next section.
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§2.1 PRELIMINARIES

For the study of higher dimensional dynamical systems, the most im-
portant new ingredients are techniques from linear algebra. Here we review
some of the standard techniques and introduce a few more advanced topics.
Later we review some multi-dimensional calculus.

We denote Euclidean n-dimensional space by Rn. Elements of Rn are
vectors which we will write either in column form

x =




x1
x2
...

xn




or as a row vector x = (x1, x2, . . . , xn) where xi ∈ R. As our interest is
mainly in low dimensional systems, n will usually be 2 or 3.

Definition 1.1. A map L:Rn → Rn is linear if L(αv + βw) = αL(v) +
βL(w), where α, β ∈ R and v,w ∈ Rn.

Linear maps provide the basic local models for higher dimensional sys-
tems. Recall that an n × n matrix A is a square of real or complex numbers
of the form

A = (aij) =




a11 . . . a1n

...
...

an1 . . . ann


 .

Here, aij denotes the entry in the ith row and jth column of A. We need a
few concepts from matrix algebra. If x ∈ Rn and A = (aij) is n × n, then
the product Ax ∈ Rn is the vector given by

Ax =




a11x1 + . . . + a1nxn
a21x1 + . . . + a2nxn

...
an1x1 + . . . + annxn


 .
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If B = (bij) is another n × n matrix, then the product A · B is a new n × n
matrix (cij) given by

cij =
n∑

k=1
aikbkj .

Note that B · A = (dij) where

dij =
n∑

k=1
bikakj

so that A · B �= B · A in general.

Example 1.2. Let

A =


 1 2

1 1


 B =


 1 2

3 4


 .

Then

A · B =


 7 10

4 6


 B · A =


 3 4

7 10


 .

There is a close relationship between linear maps and the algebra of
matrices. Indeed, let e1, . . . , en denote the standard basis of Rn, i.e., ej

is the vector whose entries are all zero except the jth, which is one. L is
completely determined by what it does to the ej , by linearity. That is, if
L(ej) = vj for j = 1, . . . , n, then we know L(v) for all vectors v ∈ Rn.

Indeed, we may write v =
n∑

j=1
αjej where αj ∈ R. That is

v =


 α1

...
αn


 .

Hence L(v) = Σαj(L(ej)) = Σαjvj is completely determined.
Let A be the n × n matrix whose columns are v1, . . . ,vn. We write

A = [v1, . . . ,vn].

Then it follows immediately that

L(x) = Ax
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for all x which shows that linear maps and matrices are intimately related.
The matrix A is called the matrix representation of L (in the standard basis).

Example 1.3. Suppose L(e1) = 2e1 and L(e2) = 3e2. Then L(x) is given
by

L(x) =


 2 0

0 3


x.

Similarly, if L(e1) = e1 + e2 and L(e2) = 2e1 + 3e2, then

L(x) =


 1 2

1 3


 x.

Composition of maps is most important in dynamical systems. For linear
maps, composition is intimately related to matrix multiplication, as shown
by the following proposition.

Proposition 1.4. Let L and P be linear maps with matrix representations
A and B respectively. Then P ◦ L(v) = (B · A)v for all v ∈ Rn.

A linear map L is invertible if it is one-to-one and onto. In this case, L
has a unique inverse which we denote by L−1. It is easy to check that L−1

is also a linear map.
We denote the n × n identity matrix by In:

In = [e1, . . . , en] =




1 0 . . . 0
0 1 . . . 0
... . . .
0 0 . . . 1


 .

The inverse of an n × n matrix A is the (unique) matrix B which satisfies

A · B = B · A = In.

It is well known that B exists iff det A �= 0, where det(A) is the determinant
of A. We denote the inverse of a matrix A by A−1. Clearly, L(x) = Ax is
invertible iff A has an inverse, and L−1(x) = A−1x.

Definition 1.5. Let L1 and L2 be linear maps of Rn. L1 and L2 are linearly
conjugate if there is an invertible linear map P such that

L1 = P−1 ◦ L2 ◦ P.
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In terms of matrices, if L1(x) = A1x and L2(x) = A2x and P (x) = Gx, then
we must have

A1x = (G−1 · A2 · G)x.

The matrices A1 and A2 are called similar when A1 = G−1A2G.

Definition 1.6. Let A be an n × n matrix. An eigenvalue of A is a root
of the characteristic polynomial of A given by p(λ) = det (A − λI). An
eigenvector of A associated to the eigenvalue λ is a non-zero vector v for
which

Av = λv.

The multiplicity of λ as an eigenvalue is the multiplicity of λ as a root of the
characteristic polynomial.

Example 1.7. If

A =


 1 −4

−1 1




then p(λ) = λ2 − 2λ − 3, so A has eigenvalues 3, −1. The eigenvector asso-
ciated to λ = 3 is found by solving the system of equations

A

(
x

y

)
= 3

(
x

y

)

or, equivalently,
x − 4y = 3x
−x + y = 3y.

This yields an eigenvector of the form

µ

(
2

−1

)

for any µ �= 0. Similarly, the vector

µ

(
2
1

)

is an eigenvector of A corresponding to λ = −1, for any µ �= 0.

Remark. If A is a diagonal or upper triangular matrix, then the eigenvalues
of A are displayed along the diagonal.
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Example 1.8. If

A =


 0 1

−1 0




then A has eigenvalues ±i. The eigenvector corresponding to the eigenvalue
i is given by the solution of the equations

y = ix

−x = iy.

That is, any vector of the form

µ

(
1
i

)

is an eigenvector corresponding to the eigenvalue i when µ �= 0.
The above examples show that a real matrix may have eigenvalues and

eigenvectors that are complex. Such eigenvalues always occur in complex
conjugate pairs, however. That is, if α+ iβ is an eigenvalue of a real matrix,
then so is α − iβ. This is true since the characteristic polynomial has real
coefficients.

Proposition 1.9. If L1(x) = A1x and L2(x) = A2x are linearly conjugate,
then A1 and A2 have the same eigenvalues .

Proof. Recall that if A and B are n × n matrices, then

det(AB) = detA · detB.

Thus we have

det(A1 − λI) = det (G−1A2G − λI)

= det (G−1A2G − λG−1G)

= det (G−1[A2 − λI]G)
= det (A2 − λI)

so that the characteristic polynomials of A1 and A2 are the same.
q.e.d.

To study the dynamics of a linear map, it is usually most effective to put
the matrix representation of the map in simple form. For low dimensional
systems, this simple form is given by the following theorem.
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Theorem 1.10. Let L:R3 → R3 be linear with L(x) = Ax. There exists a
real 3 × 3 matrix G such that G−1AG assumes one of the four forms

1.


 α −β 0

β α 0
0 0 λ


 2.


λ 0 0

0 µ 0
0 0 η




3.


 λ 1 0

0 λ 0
0 0 µ


 4.


 λ 1 0

0 λ 1
0 0 λ




where all entries are real and β �= 0.

Proof. First assume that A has a complex eigenvalue α + iβ. Since A is a
real matrix, α − iβ is also an eigenvalue. The remaining eigenvalue λ of A
is necessarily a real number. Let w be the eigenvector associated to α + iβ.
Write w = v1 + iv2 where vi are real vectors. Since Aw = (α + iβ)w, it
follows that

Av1 = αv1 − βv2

Av2 = βv1 + αv2.

If v3 is the eigenvector associated to λ, then also

Av3 = λv3.

Now let G be the matrix which satisfies Gej = vj . That is, the columns
of G are just the vectors v1,v2, and v3. Then one may check easily that
G−1AG assumes the desired form 1.

For the remaining cases, we first note that all of the eigenvalues are real.
Let us assume that all eigenvalues are equal to λ. We first assume that there
is a non-zero vector v which satisfies

(A − λI)3v = 0

(A − λI)2v �= 0.

Let
w3 = (A − λI)2v
w2 = (A − λI)v
w1 = v.

Since (A−λI)w3 = 0, we have Aw3 = λw3. Similarly, Aw2 = λw2+w3 and
Aw1 = λw1 + w2. Consequently, if G = [w1,w2,w3], then G−1AG assumes
form 3.
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If (A − λI)2v = 0 for all v, but there exists v with (A − λI)v �= 0, then
we argue as follows. Let w2 = (A−λI)v and w1 = v. Then Aw2 = λw2 and
Aw1 = λw1+w2. We claim that there exists a third vector w3 which satisfies
(A − λI)w3 = 0 but w3 and w2 are not collinear. If no such vector exists,
then the null space of the linear map A − λI is one-dimensional. Hence the
range space must be two-dimensional. But the range space of A − λI must
in turn be in the null space of A − λI, since we know that (A − λI)2v = 0
for all v. That is, we have a contradiction.

Thus, as before, we let G be the matrix which has columns w1,w2 and
w3. One checks easily that G−1AG assumes form 2.

In case not all of the eigenvalues of A are identical, the methods above
produce forms 2 or 3 even more easily. We leave the details to the reader.

q.e.d.

Corollary 1.11. Let A be a 2 × 2 matrix. Then there exists a real matrix
G such that G−1AG assumes one of the three forms with β �= 0

1.


 α −β

β α


 2.


 λ 1

0 λ




3.


 λ 0

0 µ


 .

We call the simple matrices in Theorem 1.10 and its Corollary the stan-
dard form for the linear map. Thus all linear maps in dimensions two and
three are linearly conjugate to a map whose matrix representation is in stan-
dard form. We remark that these forms are usually called normal forms.
However, this term has another connotation which we will encounter later.
Thus we will adopt this non-standard terminology and hope that this causes
no confusion later.

Remark. Note that the eigenvalues of a matrix in standard form are dis-
played on the diagonal, except in the case of a 2 × 2 block of the form

(
α −β
β α

)
,

which has eigenvalues α ± iβ.

For later use, we note that the standard forms with 1’s above the diagonal
can be modified by a linear conjugacy.
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Proposition 1.12. The linear map

L(x) =


 λ 1 0

0 λ 1
0 0 λ


 x

is linearly conjugate to

Lε(x) =


 λ ε 0

0 λ ε
0 0 λ


 x

for any ε �= 0.

Proof. Let

Sε(x) =


 ε2 0 0

0 ε 0
0 0 1


 .

Then one computes easily that S ◦ L ◦ S−1 assumes the desired form.
q.e.d.

Similarly, the linear maps with matrix representations
 λ 1

0 λ


 and


 λ 1 0

0 λ 0
0 0 µ




are linearly conjugate to those with representations
 λ ε

0 λ


 and


 λ ε 0

0 λ 0
0 0 µ




for ε �= 0.
The situation for general linear maps in higher dimensions is more or less

similar to that described above. Since we will primarily work in two and three
dimensions in the sequel, we will only state the basic facts without proof.
These facts will not be used in the sequel, but are basic for any extension of
our results to higher dimensions.

Definition 1.13. A matrix A is a λ-Jordan block if it is of the form

A =




λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
0 0 0 λ . . . 0

. . . 1
0 . . . λ


 .
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That is, the matrix A has λ’s on the diagonal, 1’s above the diagonal, and
0’s elsewhere.

Definition 1.14. A matrix A is in Jordan form if

A =




A1
A2

. . .
Ak




where each Ai is a λi-Jordan block and all other entries are 0.

Remarks.
1. There exists a complex matrix G such that, for any matrix A, G−1AG
is in Jordan form.
2. The λ’s in the Jordan blocks may be complex.
3. The eigenvalues of a matrix in Jordan form are displayed along the
diagonal.

When the λ’s in a λ-Jordan block are complex, then the Jordan form dif-
fers from the forms introduced in Theorem 1.10 and its Corollary. However,
we can again make a linear conjugacy to put it in real Jordan form where

J =




A I
A I

A I
. . .

A




where A is a 2 × 2 matrix of the form
 α −β

β α




and I is the identity 2 × 2 matrix. One simply breaks the complex vectors
into their real and imaginary parts to achieve this form. We omit the tedious
details.

Let us now review several facts from advanced calculus. Let F :R2 → R2

be a map. We will most often write such a map in the form

x1 = f1(x, y)
y1 = f2(x, y)
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where the vector (x1, y1) is the image of (x, y) under F . In vector notation,
we may also write (

x1

y1

)
= F

(
x

y

)
=

(
f1(x, y)
f2(x, y)

)
.

Calculus in higher dimensions necessitates the use of linear algebra. Re-
call that the Jacobian matrix of the map F at the point x is given by

DF (x) =




∂f1

∂x
(x)

∂f1

∂y
(x)

∂f2

∂x
(x)

∂f2

∂y
(x)


 .

This matrix will play a crucial role in the sequel, much the same as f ′(x) did
in one dimension.

Example 1.15. Let H:R2 → R2 be given by

x1 = a − by − x2

y1 = x

where a and b are parameters. One computes readily that

DH

(
x

y

)
=


 −2x −b

1 0


 .

Note that det(DH) = b, no matter at which point we evaluate the Jacobian
matrix. That is, the Jacobian determinant of H is constant. The map H
is called the Hénon map. We will return to H in the final section of this
chapter.

A map F :R2 → R2 is C1 if all of its first partial derivatives exist and
are continuous. F is C∞ if its mixed kth partial derivatives exist and are
continuous for all k. We will mainly consider C∞ maps in this chapter,
although we will occasionally use piecewise linear maps as examples.

Definition 1.16. F :R2 → R2 is a diffeomorphism if F is one-to-one, onto,
and C∞, and its inverse is also C∞.

Example 1.17. The Hénon map of Example 1.15 is a diffeomorphism of R2

as long as b �= 0. The inverse map is given by

x1 = y

y1 = (a − x − y2)/b.
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Unlike in Chapter One, where many of our maps were non-invertible,
we will concentrate mainly on diffeomorphisms in this chapter. Many of the
phenomena that were encountered in the first chapter also occur in higher
dimensions. We may raise the dimension of the space by considering the
Cartesian product of two spaces.

Definition 1.18. Let X and Y be arbitrary sets. The Cartesian product
X × Y is the set of ordered pairs of elements of X and Y , i.e.,

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

For example, R2 = R × R and R3 = R2 × R. Also, we may identify a
cylinder with R × S1 and a torus (or surface of a doughnut) with S1 × S1.
The solid torus is S1 × B2 where

B2 = {x ∈ R2 | |x| ≤ 1}.

Here the absolute value means the Euclidean distance from the origin.
We need higher dimensional generalizations of three important results

from advanced calculus.

Theorem 1.19. The Implicit Function Theorem. Suppose F :R3 → R2 is
given by

x1 = f1(x, y, z)
y1 = f2(x, y, z).

Suppose that F (0) = 0 and that the matrix of partial derivatives



∂f1

∂x
(0)

∂f1

∂y
(0)

∂f2

∂x
(0)

∂f2

∂y
(0)




is invertible (i.e., has non-zero determinant). Then there exists ε > 0 and a
smooth curve ζ(z) of the form

x = ζ1(z)
y = ζ2(z)

defined for |z| < ε and such that F (ζ1(z), ζ2(z), z) = 0.

Remark. As in Chapter One, we will use the Implicit Function Theorem
to guarantee the existence of “nice” solutions to equations, i.e., a nice curve
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of solutions. This will arise when we deal with bifurcation theory in higher
dimensions.

Theorem 1.20. The Inverse Function Theorem. Let F :R2 → R2. Suppose
F (0) = 0 and DF (0) is an invertible matrix. Then there exists a neigh-
borhood U of 0 and a C∞ map G:U → R2 such that F ◦ G(x) = x for all
x ∈ U .

That is, if the Jacobian matrix of F is invertible at 0, then there exists
a local inverse for F .

Theorem 1.21. The Contraction Mapping Theorem. Let F : B2 → B2

where B2 is the closed unit disk

B2 = {x ∈ R2 | |x| ≤ 1}.

Suppose |F (x1)−F (x2)| < λ|x1−x2| for all vectors xi ∈ B2 and some λ < 1.
Then there exists a unique fixed point x∗ ∈ B2. Moreover,

lim
n→∞ F n(x) = x∗

for all x ∈ B2.

Exercises

1. Find all of the eigenvalues and eigenvectors of the following matrices:

a.


 1 1

1 0


 .

b.


 3 1

−1 1


 .

c.


 1 1

−1 1


 .

d.


 −1 −2

4 3


 .

2. Use the eigenvalues and eigenvectors computed in Exercise 1 to construct
the standard forms for each of these matrices.
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§2.2 THE DYNAMICS OF LINEAR MAPS: TWO AND THREE
DIMENSIONS

Using the classification theorems of the previous section, it is relatively
straightforward to describe the dynamical behavior of all linear maps in
dimensions two and three.

Example 2.1. Let

L1(x) =


 2 0

0 1
2


 x.

That is, if

x =
(
x

y

)
,

then

L1

(
x

y

)
=

(
2x
1
2y

)
.

Note that the matrix representation of L1 has eigenvalues 2 and 1/2. Also,
L1 preserves both the x- and y-axes. Points on the x-axis move away from
the origin under iteration of L1, while points on the y-axis converge toward 0
under iteration. Points not on either axis tend toward ∞ under both forward
and backward iteration.

Example 2.2. Let

L2(x) =


 2 0

0 −1
2


x.

L2 also contracts the y-axis, but this time, points hop from one side of the
origin to the other under iteration of L2. The eigenvalues here are 2 and −1

2 .

Example 2.3. Let

L3(x) =




1
2 0

0 1
3


 x.
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In this case, the eigenvalues are 1/2 and 1/3. All points tend toward the
origin under iteration of L3. Points move more quickly toward 0 in the
y-direction since the rate of contraction in that direction is stronger.

Example 2.4. Let

L4(x) =


 0 −1

2

1
2 0


 x.

Again, all points move toward the origin under iteration of L4. This follows
since each vector in R2 is contracted by a factor of 1

2 by each application of
L4. This time, however, there is no invariant line; the polar angle of each
point is increased by π/2 each time L4 is iterated. Hence points tend to
spiral into the origin. The eigenvalues are ±i/2.

Example 2.5. Let

L5(x) =


 0 1/2 0

−1/2 0 0
0 0 2


 .

In this example, the x, y-plane is invariant and L5 behaves on this plane
exactly as in the previous example. Points off the x, y-plane tend to ∞
under iteration of L5. Note that the z-axis is invariant, and that L5 expands
vectors on the z-axis by a factor of 2. Here the eigenvalues are ±i/2 and 2.

The phase portraits of the linear maps in Examples 2.1-2.5 are sketched
in Fig. 2.1. While the linear maps described in these examples do not by
any means exhaust all possibilities, they nevertheless highlight some of the
similarities and differences between one- and higher dimensions. The ma-
jor difference is that the origin may have both expanding and contracting
directions simultaneously. As in the one-dimensional case, it is the eigen-
values which govern whether or not the map has contracting or expanding
directions. Eigenvalues larger than one (in absolute value) lead to expansion,
whereas eigenvalues smaller than one lead to contraction. This motivates the
definition of hyperbolicity.

Definition 2.6. An invertible linear map is hyperbolic if none of its eigen-
values have absolute value one.

Note that all of the above examples are hyperbolic. We also note that,
whenever a linear map has an eigenvalue of absolute value less than one,
then there is a corresponding direction in which points are attracted toward
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Fig. 2.1. The dynamics of the linear maps L1, . . . , L5.

the origin, which is always fixed. When there is a pair of complex conjugate
eigenvalues of absolute value less than one, then there is a two-dimensional
set of points attracted to 0. This is a general fact.

Proposition 2.7. Suppose L:R3 → R3 has all eigenvalues less than one in
absolute value. Then Ln(x) → 0 as n → ∞ for all x ∈ R3.

Proof. Recall that the matrix representation A of L can be brought into one
of four standard forms as shown in Theorem 1.10 and Proposition 1.12:

1.


 α −β 0

β α 0
0 0 λ


 2.


 λ 0 0

0 µ 0
0 0 η



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3.


 λ ε 0

0 λ 0
0 0 µ


 4.


λ ε 0

0 λ ε
0 0 λ




where all entries are real and ε �= 0.
Consider the real-valued function V (x, y, z) = x2 + y2 + z2. We claim

that there exists ν < 1 such that, if ε > 0 is small enough, we have

V ◦ L(x) ≤ νV (x)

with equality if and only if x = 0. This is a simple computation which we
will make in case 4 only.

V ◦ L(x) = λ2(x2 + y2 + z2) + ε2(y2 + z2) + 2λε(xy + yz)

≤ (λ2 + ε2)(x2 + y2 + z2) + 2|λε|(|xy| + |yz| + |xz|)
≤ (λ2 + ε2 + 4|λε|)(V (x))

since |xy| ≤ x2 + y2. Consequently, we may choose ε small enough so that
the inequality holds with ν = λ2 + 4|λε| + ε2.

It follows that if x �= 0, then

V ◦ Ln(x) ≤ νnV (x).

Hence V ◦ Ln(x) → 0 as n → ∞. But V (x) = 0 if x = 0. Thus Ln(x) → 0
as required. The other cases are handled similarly.

q.e.d.
The function V constructed in the proof of Proposition 2.7 is called a

Liapounov function. We formalize this notion with a definition.

Definition 2.8. Let F :Rn → Rn be a diffeomorphism. V :Rn → R is a
Liapounov function for F centered at p if

1. V (x) > 0 for x �= p
2. V (p) = 0
3. V ◦ F (x) ≤ V (x) with equality iff x = p.

Note that F (p) = p is forced by this definition. If V is a strict Liapounov
function, i.e., V ◦ F (x) < V (x) if x �= p, then it follows easily as in the
previous proof that F n(x) → p as n → ∞ for all x in a neighborhood of p.

In case all of the eigenvalues of L are larger than one in absolute value,
then the arguments above may be altered to yield the following result.
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Corollary 2.9. Suppose L:R3 → R3 is linear and all eigenvalues of L have
absolute value larger than one. Then Ln(x) → 0 as n → −∞.

We now turn our attention to the case of mixed eigenvalues: some with
absolute value larger than one and some smaller.

Proposition 2.10. Suppose the eigenvalues of L are λ1, λ2, and λ3 with
1. |λ1|, |λ2| < 1
2. |λ3| > 1.

Then there is a plane W s and a line Wu on which
1. if x ∈ W s, then L(x) ∈ W s and Ln(x) → 0 as n → ∞.
2. if x ∈ Wu, then L(x) ∈ Wu and L−n(x) → 0 as n → ∞.
3. if x �∈ Wu ∪ W s then |Ln(x)| → ∞ as n → ±∞.

Proof. The standard form of L(x) = Ax is either

A =


 α β 0

−β α 0
0 0 λ3


 or A =


 λ1 ∗ 0

0 λ2 0
0 0 λ3




where ∗ is either positive (only if λ1 = λ2) or zero. (In the first case, λ1 =
α+ iβ.) In this form, W s is the x, y-plane and Wu is the z-axis. Application
of Proposition 2.7 and its Corollary to either of these subspaces yields the
result.

q.e.d.

Remarks.
1. In the case where two of the eigenvalues are larger than one in absolute
value, the above result may clearly be modified to yield a plane of points
which tend to zero under iteration of L−1. There is a line through 0 on
which L is a contraction.
2. In higher dimensions, there is an analogous result which may be proved
by using the Jordan form of the map.

The invariant subspaces given by Proposition 2.10 will play an important
role in the sequel. Hence they deserve a name.

Definition 2.11. W s is called the stable subspace of L; Wu is the unstable
subspace.
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Fig. 2.2.

In the simple case where the matrix representations are in standard form,
the stable and unstable subspaces are the coordinate planes and/or axes.
This is not true in general.

Example 2.12. Consider the linear map

L(x) =


 2 1

1 1


 x.

This linear map has eigenvalues 3
2 +

√
5

2 > 1 and 0 < 3
2 −

√
5

2 < 1. The
eigenvectors corresponding to these eigenvalues are

y =
(√

5 − 1
2

)
x

y = −
(√

5 + 1
2

)
x

respectively. The phase portrait is given in Fig. 2.2. We will encounter
this particular linear map in a vastly different setting when we discuss the
hyperbolic toral automorphisms in §2.4.

In one dimension, the lack of hyperbolicity was often a signal that a
bifurcation might take place. This is true in higher dimensions as well, as we
shall see in §2.8. Without discussing the possible bifurcations which occur,
let us simply note by several linear examples that the lack of hyperbolicity
yields quite different phase portraits than those described in the hyperbolic
case above. For simplicity, we will deal only with the invertible case.



§2.2 DYNAMICS OF LINEAR MAPS 179

Example 2.13. Let

L(x) =


 1 0

0 2


 x.

In this case, the entire x-axis is fixed while there is expansion away from the
x-axis.

Example 2.14. Let

L(x) =


 −1 0

0 1
2


 x.

In this case, 0 is the only fixed point, but all other points on the x-axis have
period 2. All other points are contracted toward the x-axis.

Example 2.15. Let

L(x) =


 0 −1

1 0


 x.

A has eigenvalues ±i and L is a rotation through 90o. Hence all points except
0 are periodic with period 4. In general, if A is of the form

A =


 α −β

β α




with α2+β2 = 1, then L is a rotation of the plane through angle arctan(β/α).

Exercises
1. Describe the dynamics of the linear maps whose matrix representation
is

a.


−2 0

0 2


 .

b.


 −1

2 0

0 2


 .

c.


 1

2 0

0 −2


 .

d.


 −1

2 0

0 −1
2


 .
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e.


 2 0

0 2


 .

2. Describe the dynamics of the linear maps whose matrix representation
is given below. Identify precisely the stable and unstable sets.

a.


 2 1

0 1
2




b.


 1 2

3 4




c.


 2 1

1 1




d.


 1

2 0 0
1 2 0
0 0 3




e.


 1 1 0

1 2 0
0 0 2




3. Describe the dynamics of each of the following linear maps, indicating
which are non-hyperbolic.

a.


 0 1

1 0




b.


 0 0 1

0 1 0
−1 0 0




c.


 1 0

0 −1




d.




1√
2

1√
2

− 1√
2

1√
2




e.


 1 0 0

0 2 2
0 −2 2




4. Consider the linear map

L(x) =




1
2 0

0 1
3


 x.
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Prove that Lnx → 0 for all x ∈ R2. Prove that, if x does not lie on the
y-axis, then the orbit of x tends to 0 tangentially to the x-axis.
5. A function F :Rn → R is called an integral for a linear map L if F ◦
L(x) = F (x), i.e., F is constant along orbits of L. Show that

F

(
x

y

)
= x2 + y2

is an integral for

L(x) =


 0 1

−1 0


 x.

6. Construct (non-trivial) integrals for each of the following linear maps.

a. L(x) =


 0 1

1 0


 x.

b. L(x) =


 2 0

0 1
3


 x.

§2.3 THE HORSESHOE MAP

Symbolic dynamics, which played such a crucial role in our understand-
ing of the one-dimensional quadratic map, can also be used to study higher
dimensional phenomena. In this section, we will study a now-classical ex-
ample due to Smale, the horseshoe map. This was the first example of a
diffeomorphism which had infinitely many periodic points and yet was struc-
turally stable. We will see that this map has much in common with the
quadratic map which motivated so much of the material in Chapter One.

To define the map, we first consider a region D consisting of three com-
ponents: a central square S with side length 1 and two semicircles D1 and
D2 at either end. See Fig. 3.1. D is shaped like a “stadium.”

The horseshoe map F takes D inside itself according to the following
prescription. First, linearly contract S in the vertical direction by a factor
δ < 1/2 and expand it in the horizontal direction by a factor 1/δ so that S
is long and thin. Then put S back inside D in a horseshoe-shaped figure as
in Fig. 3.2.
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Fig. 3.1. The “stadium” D.

Fig. 3.2. The Smale horseshoe map.

The semicircular regions D1 and D2 are contracted and mapped inside
D1 as depicted. We remark that F (D) ⊂ D and that F is one-to-one.
However, since F is not onto, F−1 is not globally defined. The remainder of
this section is devoted to the study of the dynamics of F in D.

Note first that the preimage of S consists of two vertical rectangles V0
and V1 which we may assume are mapped linearly onto the two horizontal
components H0 and H1 of F (S) ∩ S. The width of V0 and V1 is δ, as is the
height of H0 and H1. See Fig. 3.3.

By linearity of F : V0 → H0 and F : V1 → H1, it follows that F preserves
horizontal and vertical lines in S. For later use, we note that if h is a
horizontal line segment in S whose image also lies in S, then the length of
F (h) is 1/δ times the length of h. Similarly, if both v and F (v) are vertical
line segments in S, then the length of F (v) is shrunk by a factor of δ.

We claim that the dynamics of F are very similar to those of the quadratic
map studied in §1.5. Note first that, since F is a contraction on D1, F has
a unique fixed point p in D1 and lim

n→∞Fn(q) = p for all q ∈ D1. This follows
immediately from the Contraction Mapping Theorem. Since F (D2) ⊂ D1,
all forward orbits in D2 behave likewise. Similarly, if q ∈ S but F k(q) �∈ S
for some k > 0, then we must have that F k(q) ∈ D1 ∪ D2 so that F n(q) → p
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Fig. 3.3.

as n → ∞. Consequently, to understand the forward orbits of F , it suffices
to consider the set of points whose forward orbits lie for all time in S. We
will do more: we will describe

Λ = {q ∈ S|F k(q) ∈ S for all k ∈ Z}.

Now, if the forward orbit of q lies in S, we must have, first of all, that
q ∈ V0 or q ∈ V1, for all other points in S are mapped out of S and into
D1 ∪ D2. If F 2(q) ∈ S, then, similarly, we must have F (q) ∈ V0 ∪ V1, i.e.,
q ∈ F−1(V0) ∪ F−1(V1). Here F−1(V0) means the inverse image of V0 in S.
Clearly, there are substrips in both V0 and V1 which map into V0 as depicted
in Fig. 3.4.

Fig. 3.4. The forward image F 2(S).

This is the inductive step: if V is any vertical rectangle connecting the
upper and lower boundaries of S with width w, then F−1(V ) is a pair
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of smaller vertical rectangles of width δw, one in each Vi. Consequently,
F−1(F−1(Vi)) = F−2(Vi) consists of four vertical rectangles, each of width
δ2, F−3(Vi) consists of eight vertical rectangles of width δ3, etc. Hence the
same procedure we used in §1.5 shows that

Λ+ = {q|F k(q) ∈ S for k = 0, 1, 2, . . .}

is the product of a Cantor set with a vertical interval. Arguing entirely
analogously, it is easy to check that

Λ− = {q|F−k(q) ∈ S for k = 1, 2, 3, . . .}

consists of a product of a Cantor set with an interval. In this case, the
intervals are horizontal. Finally,

Λ = Λ+ ∩ Λ−

is the intersection of these two sets.
To introduce symbolic dynamics into the system, we first choose any

vertical interval � in Λ+. Note that F k(�), is a vertical line segment of length
δk in either V0 or V1. Hence we may attach an infinite sequence s0s1s2 . . .
of 0’s or 1’s to any point in � according to the rule sj = α iff F j(�) ⊂ Vα.
The number s0 tells us in which vertical strip the line � is located, s1 tells
where its image is located, etc. We can similarly attach a sequence of integers
to any horizontal line segment h. For convenience, we write this sequence
. . . s−3s−2s−1, where s−j = α iff

F−j(h) ⊂ Vα for j = 1, 2, 3, . . . .

Note again that F−1(h), F−2(h), . . . are horizontal line segments of decreas-
ing lengths.

Consequently, if p is any point in Λ+ ∩ Λ−, we may associate a pair of
sequences of 0’s and 1’s to p. One sequence gives the itinerary of the forward
orbit of p; the other describes the backward orbit. Let us amalgamate both
of these sequences into one, doubly-infinite sequence of 0’s and 1’s. That is,
we define the itinerary S(p) by the rule

S(p) = (. . . s−2s−1 · s0s1s2 . . .)

where sj = k if and only if F j(p) ∈ Vk.
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This then gives the symbolic dynamics on Λ. Let Σ2 denote the set of
all doubly-infinite sequences of 0’s and 1’s:

Σ2 = {(s) = (. . . s−2s−1 · s0s1s2 . . .)|sj = 0 or 1}.

Impose a metric on Σ2 by defining d[(s), (t)] =
∞∑

i=−∞

|si − ti|
2|i| exactly as

before. Define the shift map σ by

σ(. . . s−2s−1 · s0s1s2 . . .) = (. . . s−2s−1s0 · s1s2 . . .).

That is, σ simply shifts each sequence in Σ2 one unit to the left (equivalently,
σ shifts the decimal point one unit to the right). Unlike our previous shift
map, this map has an inverse. Clearly, shifting one unit to the right gives this
inverse. It is easy to check that σ is a homeomorphism on Σ2 (see Exercise
2).

The shift map is now the model for the restriction of F to Λ. Indeed,
the map S gives a topological conjugacy between F on Λ and σ on Σ2. We
leave the details of this proof to the reader (see Exercise 3).

All of the properties which held for the old one-sided shift hold for σ as
well. For example, there are precisely 2N periodic points of period N for σ.
There is a dense orbit for σ as well (see Exercises 4, 5). But there are new
phenomena present as well.

Definition 3.1. Two points p1 and p2 are forward (respectively backward)
asymptotic if Fn(p1), Fn(p2) ∈ D for all n ≥ 0 (resp. n ≤ 0 ) and

lim
n→∞|Fn(p1) − Fn(p2)| = 0

(resp. n → −∞ ).

Intuitively, two points in D are forward asymptotic if their orbits ap-
proach each other as n → ∞. Note that any point which leaves S under
forward iteration of F is forward asymptotic to the fixed point p ∈ D1. Also,
if p1 and p2 lie on the same vertical line in Λ+, then p1 and p2 are forward
asymptotic. If p1 and p2 lie on the same horizontal line in Λ−, then they are
backward asymptotic.

As in the linear theory, the notion of forward and backward asymptotic
orbits allows us to define the stable and unstable sets of a point.

Definition 3.2. The stable set of p is given by

W s(p) = {z||F n(z) − Fn(p)| → 0 as n → ∞}.
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Fig. 3.5. The stable and unstable sets associated to p∗.

The unstable set of p is given by

Wu(p) = {z||F−n(p) − F−n(z)| → 0 as n → ∞}.

Equivalently, a point z lies in W s(p) if p and z are forward asymptotic.
For example, any point in S which leaves S under forward iteration of the
horseshoe map lies in the stable set of the fixed point in D1.

The stable and unstable sets of points in Λ are more complicated. For
example, consider the fixed point p∗ which lies in V0 and therefore has the
sequence (. . . 00.000 . . .) attached. Any point which lies on the vertical seg-
ment �s through p∗ lies in W s(p∗). But there are many other points in this
stable set. Suppose the point q eventually maps into �s. Then there is an
integer n such that |F n(q) − p∗| < 1. Hence

|Fn+k(q) − p∗| < δk

and it follows that q ∈ W s(p∗). Thus, the union of vertical intervals given
by F−k(�s) for k = 1, 2, 3, . . . all lie in W s(p∗). The reader may easily check
that there are 2k such intervals. See Fig. 3.5.

Since F (D) ⊂ D, the unstable manifold of p∗ assumes a somewhat dif-
ferent form. The horizontal line segment �u through p∗ in D clearly lies in
W u(p∗). As above, all of the forward images of �u also lie in D. The reader
may easily check that F k(�u) is a “snake-like” curve in D which cuts across
S exactly 2k times in a horizontal segment. See Fig. 3.5.
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These stable and unstable sets are easy to describe on the shift level. Let

s∗ = (. . . s∗
−2s

∗
−1 · s∗

0s
∗
1s

∗
2 . . .) ∈ Σ2.

Clearly, if t is a sequence whose entries agree with those of s∗ to the right of
some entry, then t ∈ W s(s∗). The converse of this is also true, as is shown
in Exercise 6.

A natural question that arises is our use of the term “Cantor set” to
describe the set Λ = Λ+ ∩Λ− for the horseshoe map and the similar set Λ for
the quadratic map of Chapter One. Intuitively, it may appear that the Λ for
the horseshoe has “twice” as many points. However, both Λ’s are actually
homeomorphic! This is best seen on the shift level.

Let Σ1
2 denote the set of one-sided sequences of 0’s and 1’s and Σ2 the

set of two-sided such sequences. Define a map

Φ:Σ1
2 → Σ2

by Φ(s0s1s2 . . .) = (. . . s5s3s1 · s0s2s4 . . .). It is easy to check that Φ is a
homeomorphism between Σ1

2 and Σ2 (see Exercise 11).

Remarks.
1. We have now seen stable and unstable sets in two guises: the stable
and unstable subspaces of linear maps and the above collection of horizontal
and vertical line segments. This will become a common pattern for higher
dimensional systems that are “hyperbolic” in a sense to be made precise
later. Each point in a hyperbolic set will come equipped with contracting
and expanding directions which will play the role of stable and unstable sets.
2. Unlike the quadratic map, the horseshoe example was defined geometri-
cally rather than algebraically. This is often the case with higher dimensional
maps: it is easier to present and work with examples defined geometrically.
It is important to realize that it is possible to write down an explicit alge-
braic expression which gives a map similar to the horseshoe. This map is the
Hénon map which we will discuss later in §2.9.

Exercises

1. Prove that d[(s), (t)] =
∞∑

i=−∞

|si − ti|
2|i| is a metric on Σ2.

2. Prove that the shift σ is a homeomorphism.
3. Prove that S: Λ → Σ2 gives a topological conjugacy between σ and F .
4. Construct a dense orbit for σ.
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5. Prove that periodic points are dense for σ.
6. Let s∗ ∈ Σ2. Prove that W s(s∗) consists of precisely those sequences
whose entries agree with those of s∗ to the right of some entry of s∗.
7. Let (0) = (. . . 00.000 . . .) ∈ Σ2. A sequence s ∈ Σ2 is called homoclinic
to (0) if s ∈ W s(0) ∩ W u(0). Describe the entries of a sequence which is
homoclinic to (0). Prove that sequences which are homoclinic to (0) are
dense in Σ2.
8. Let (1) = (. . . 11.111 . . .) ∈ Σ2. A sequence s is a heteroclinic sequence
if s ∈ W s(0) ∩ W u(1). Describe the entries of such a heteroclinic sequence.
Prove that such sequences are dense in Σ2.
9. Generalize the definitions of homoclinic and heteroclinic points to arbi-
trary periodic points for σ and reprove Exercises 7 and 8 in this case.
10. Prove that the set of homoclinic points to a given periodic point is
countable.
11. Let Σ1

2 denote the set of one-sided sequences of 0’s and 1’s. Define
Φ:Σ1

2 → Σ2 by

Φ(s0s1s2 . . .) = (. . . s5s3s1 · s0s2s4 . . .).

Prove that Φ is a homeomorphism.
12. Consider the map F on D defined geometrically as in Fig. 3.6. Assume
that F linearly contracts vertical lengths and linearly expands horizontal
lengths in S exactly as in the case of the Smale horseshoe. Let

Λ = {p ∈ D|Fn(p) ∈ S for all n ∈ Z}.

Use the techniques of §1.13 to show that F on Λ is topologically conjugate
to a two-sided subshift of finite type generated by a 3× 3 matrix A. Identify
A. Discuss the dynamics of F off Λ.
13. Rework Exercise 12, this time with the map defined geometrically in
Fig. 3.7.
14. Let R: Σ2 → Σ2 be defined by

R(. . . s−2s−1.s0s1s2 . . .) = (. . . s2s1s0.s−1s−2 . . .).

Prove that R◦R = id and that σ◦R = R◦σ−1. Conclude that σ = U◦R where
U is a map which satisfies U ◦ U = id. Maps which are their own inverse are
called involutions. They represent very simple types of dynamical systems.
Hence the shift may be decomposed into a composition of two such maps.
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Fig. 3.6.

Fig. 3.7.

15. Let s be a sequence which is fixed by R. Suppose that σn(s) is also
fixed by R. Prove that s is a periodic point of σ of period 2n.

16. Rework the previous exercise, assuming that σn(s) is fixed by U , where
U is given as in Exercise 13. What is the period of s?
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§2.4 HYPERBOLIC TORAL AUTOMORPHISMS

In this section, we introduce a completely different class of dynamical
system, the Anosov systems or hyperbolic toral automorphisms. These maps
are important in that they are chaotic everywhere that they are defined.
Nevertheless, their dynamics can be described completely. One difference
between these maps and those discussed previously is that these maps are
naturally defined on a torus or “doughnut” rather than on Euclidean space.
Even though the maps are induced by linear maps on Euclidean space (which
have extremely simple dynamics), the maps on the tori have extremely rich
dynamical structure.

To describe the torus, let us begin with the plane. We will consider
as identical all points whose coordinates differ by integers. That is to say,
the point (α, β) in the plane is to be regarded as the same as the points
(α+1, β), (α+5, β+3), and, in general, (α+M, β+N), where M and N are
integers. We let [α, β] denote the set of all points equivalent to (α, β) under
this relation. To be somewhat more formal, the relation (x, y) ∼ (x′, y′) if
and only if x − x′ and y − y′ are integers gives an equivalence relation on
points in the plane. The torus is thus the set of all equivalence classes under
this relation.

Geometrically, this procedure can be visualized as follows. Consider the
unit square in the plane 0 ≤ x, y ≤ 1. Under the above identifications, only
points on the boundary of the square need be considered. Indeed, the top
boundary y = 1 should be considered the same as the bottom boundary
y = 0, and similarly the left and right boundaries x = 0 and x = 1 should be
identified. When this occurs, the square becomes first a cylinder and then a
torus, as in Fig. 4.1.

Remarks

1. This procedure is not limited to two dimensions; one may define an n-
dimensional torus using the same equivalence relation on Rn. This is shown
in Exercise 2.

2. The torus may also be regarded as the Cartesian product of two circles.
See Exercise 3.

Let T denote the torus, and let π be the natural projection of R2 onto
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Fig. 4.1. Construction of a torus from a square.

T , i.e.,
π(x, y) = [x, y] = π(x + M, y + N).

Certain dynamical systems on a torus can be described most efficiently in
the plane and then projected onto the torus. For example, suppose F :R2 →
R2 has the property that

F

(
x

y

)
− F

(
x + M

y + N

)

belongs to the integer lattice for all points in the plane and all integers M
and N . It follows that

π ◦ F

(
x

y

)
= π ◦ F

(
x + M

y + N

)

so that F induces a well-defined map F̂ on the torus. F̂ is defined by the
diagram

R2 F→ R2

↓ π ↓ π

T
F̂→ T.

As an example, if L is a linear map whose matrix representation is an
integer matrix, then L̂ is clearly well-defined on T . L̂ is called a toral auto-
morphism. For our purposes, we need a few more hypotheses on L.

Definition 4.1. Let L(x) = A · x where A is a 2 × 2 matrix satisfying
1. All entries of A are integers.
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2. det(A) = ±1.
3. A is hyperbolic.

The map induced on T by A is called a hyperbolic toral automorphism
and is denoted by LA. LA is clearly differentiable, since its Jacobian matrix
is simply the matrix A. Moreover, since det(A) = ±1, the inverse of A is also
an integer matrix which is hyperbolic. Hence A−1 also induces a hyperbolic
toral automorphism which is, of course, the inverse of LA. It follows that LA

is a diffeomorphism of T .
The following proposition shows that LA is dynamically quite different

from its linear counterpart.

Proposition 4.2. Per (LA) is dense in T .

Proof. Let p be any point in T with rational coordinates. By finding a
common denominator, we may assume that p is of the form [αk , β

k ], where α,
β, and k are integers. Such points are clearly dense in T , for we may take k
arbitrarily large. We claim that p is periodic with period less than or equal
to k2.

To see this, we note that there are exactly k2 points in T of the form
[αk , β

k ] with 0 ≤ α, β < k. Moreover, the image of any such point under LA

may also be written in this form, since the entries of A are integers. This
means that LA permutes these points. Therefore there exist integers i and
j such that Li

A(p) = Lj
A(p) and |i − j| ≤ k2. Applying L−i

A to this equation
shows that p is periodic of period less than or equal to k2.

Example 4.3. Consider the map LA: T → T where

A =
(

2 1
1 1

)
.

Clearly, [0, 0] is a fixed point. The point [0, 0] is in fact the only fixed point,
as we see by solving the equations for a fixed point:

2x + y = x + M

x + y = y + N

for M, N ∈ Z. We have LA[1/2, 1/2] = [1/2, 0], LA[1/2, 0] = [0, 1/2] and
LA[0, 1/2] = [1/2, 1/2], so that [1/2, 1/2] is periodic with period 3. One may
readily compute other periodic points for this map.

The density of the periodic points is just the beginning of the story of
the chaotic nature of LA. Since A is hyperbolic with determinant ±1, the
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eigenvalues must both be real. Moreover, one of the eigenvalues, λs, must
satisfy |λs| < 1 and the other, λu, must satisfy |λu| > 1. By the results
of section 2.1, the stable and unstable subspaces W s and W u must be lines
through the origin in R2. Now let [x, y] ∈ T . Let �s and �u be lines in R2

which intersect at (x, y) and which are parallel to W s and W u respectively.
We denote the projections of these straight lines in T by

W s[x, y] = π(�s)

Wu[x, y] = π(�u).

The notation is meant to suggest that these lines project to the stable and
unstable sets associated to [x, y] in T , as we see from the following Proposi-
tion.

Proposition 4.4.
1. W s[x, y] is the stable set associated to [x, y], i.e., if [x′, y′] ∈ W s[x, y]

then d(Ln
A[x′, y′], Ln

A[x, y]) → 0 as n → ∞ where d is the distance in
T induced by the Euclidean distance along the stable set.

2. Similarly, Wu[x, y] is the unstable set associated to [x, y].

Proof. We prove part 1; the proof of part 2 is similar.
Let L(x) = A ·x be the linear map on R2. Let (x, y) and (x′, y′) lie on a

line parallel to W s in R2. Let � denote the line segment connecting (x, y) to
(x′, y′). By linearity, Ln(�) is a segment of a line which is also parallel to W s.
Moreover, length (Ln(�)) = λn

s · length (�). Hence |Ln(x, y)−Ln(x′, y′)| → 0
as n → ∞. It follows that d(Ln

A[x, y], Ln
A[x′, y′]) → 0 as well.

q.e.d.

Proposition 4.5. W s[x, y] and W u[x, y] are dense in T for each [x, y] ∈ T .

Proof. First consider W s in R2. We claim that W s is a line with irrational
slope in R2. For if this were not the case, W s would necessarily pass through
a point with coordinates (M,N) for M,N ∈ Z. But then all of the L-iterates
of (M,N) would have integer coordinates, since A is an integer matrix. But
this is impossible, since Ln(M, N) → 0 as n → ∞.

Now consider the successive intersections of W s with the lines y = N in
R2. Let xN be the x-coordinate of the point on W s and y = N . Note that
x1 is the reciprocal of the slope of W s, which is irrational. Also, x2 = 2x,
and, in general xN = Nx1.

On the torus, the point (xj , j) projects to a point of the form [αj , 0],
where 0 ≤ αj < 1. The line y = 0 defines a circle in T and the αj are
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the successive images of [0] under an irrational translation of this circle. By
Jacobi’s Theorem (Theorem 3.13 of Chapter One), these points are dense in
the circle. The result then follows easily.

In the general case, the lines �s similarly project to curves that wind
densely about the torus, and Wu is handled in an analogous fashion.

q.e.d.
The stable and unstable sets of a point have some special properties.

They are preserved by LA in the sense that if [x′, y′] ∈ W s[x, y], then
LA[x′, y′] ∈ W s(LA[x, y]). Moreover, through each point [x, y] ∈ T , there
is a unique stable and unstable set. Thus the stable and unstable sets give
examples of a foliation. In two dimensions, a foliation is simply a collection
of curves whose union is the entire space. The curves in this collection cannot
cross each other, although they may be closed like a circle.

The stable and unstable set of any point in T is the image of a straight
line in T under the projection π. By Proposition 4.5, each of these curves
must wind densely about the torus. Since W s and W u have different slopes,
it follows that their projections must meet at a dense set of points in T as
well. These points of intersection generalize the notion of a homoclinic point
introduced in §1.16.

Definition 4.6. Let [x, y] ∈ T be a periodic point for LA. A homoclinic
point to [x, y] is a point p �= [x, y] which lies in W s[x, y] ∩ W u[x, y].

We remark that, for a hyperbolic toral automorphism, W s[x, y] and
W u[x, y] always meet at a non-zero angle at a homoclinic point. When
this happens, the homoclinic point is called transverse. Hence we have:

Proposition 4.7. Transverse homoclinic points are dense in T .

Remark. If [x, y] is a periodic point for LA, then any homoclinic point to
[x, y] tends to the orbit of [x, y] under both forward and backward iteration
of LA. These points cannot be recurrent in the sense that their forward
orbits continually return to any prescribed neighborhood. See Exercise 1.

These ideas also allow us to show that LA is topologically transitive.
Let U and V be any two open sets in T , meaning, by definition, that the
preimages under π of U and V are open in R2. We will produce a point [p]
in U and an integer k such that Lk

A[p] ∈ V . We may select points [r] ∈ U
and [s] ∈ V that are homoclinic to [0].

Now let ε > 0. Choose an open interval Iu of length δ > 0 in Wu[0] and
containing [r]. Similarly, choose Is in W s[0] containing [s]. Ln

A expands Iu
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Fig. 4.2.

by a factor of |λu|n and L−n
A expands Is by the same factor. Now choose n

large enough so that
1. d(Ln

A[r], 0) < ε/2
2. d(L−n

A [s], 0) < ε/2
3. |λu|nδ > ε.

Here the distance d is the Euclidean distance defined in a neighborhood of
[0]. Since Ln

A(Iu) and L−n
A (Is) are parallel to W u[0] and W s[0] respectively, it

follows that Ln
A(Iu)∩L−n

A (Is) �= ∅. Let [q] be a point in this intersection. See
Fig. 4.2. Then [p] = L−n

A [q] ∈ U and Ln
A[q] ∈ V . Consequently L2n

A [p] ∈ V ,
giving the required point.

We finally note that LA has sensitive dependence on initial conditions.
Indeed, if [p] ∈ T and [q] ∈ Wu[p], then each iteration of LA lengthens
the distance between images of [p] and [q], at least along W u[p]. As a con-
sequence, LA is chaotic on the entire torus. We single this fact out as a
Theorem.

Theorem 4.8. Let LA be a hyperbolic toral automorphism of T . Then
1. Periodic points of LA are dense in T .
2. LA is topologically transitive.
3. LA has sensitive dependence on initial conditions.

Thus, a hyperbolic toral automorphism is chaotic on all of T . To study
the dynamics of LA one can again invoke symbolic dynamics. The answer in
this case is only partially satisfactory for, unlike the case of the horseshoe,
we do not get a conjugacy with a shift map. Rather, we get some ambiguity
in the choice of sequences.

To describe the symbolic dynamics, we need to introduce the concept of
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a Markov partition. For definiteness, let us fix the matrix

A =


 1 1

1 0




and work with the hyperbolic linear automorphism induced by A which we
denote simply by L.

The eigenvalues of A are 1
2(1 +

√
5) and 1

2(1 −
√

5). The eigenvector
corresponding to the unstable eigenvalue is the line y = 1

2(−1+
√

5)x, whereas
the stable eigenvalue has eigenvector y = −1

2(1 +
√

5)x.
As in the case of the horseshoe, we will first construct some rectangles

with sides on the stable and unstable set of [0]. To be precise, consider the
interval from a to b in W s[0] and the interval from c to d in W u[0] as depicted
in Fig. 4.3. These two intervals define three rectangles in the torus which
we denote by R1, R2, and R3. Two sides of each rectangle lie in the interval
from a to b. We call these sides the stable boundaries. Note that L maps
this interval inside itself. As a consequence, if [p] is any point on a stable
boundary of one of the Ri, then the entire forward orbit of [p] lies in this
interval.

Similarly, the unstable boundaries of the Ri lie in the interval from c to
d. This interval is contracted by F−1, so that the entire backward orbits of
points in the unstable boundary lie in this set. See Fig. 4.4.

To study the dynamics on T , we note first that whenever L(Ri) meets
the interior of Rj , the image cuts completely across Rj in the unstable direc-
tion. Similarly, whenever L−1(Ri) meets the interior of Rj, the image cuts
completely across Rj in the stable direction. Rectangles which have this
property and whose boundaries lie in the stable and unstable sets are said
to form a Markov partition for the map. This partition allows us to define
the symbolic dynamics just as in the horseshoe map, since forward images of
the Ri always give “unstable” rectangles and backward images give “stable”
rectangles.

Note that L(R1) cuts across the interior of both R2 and R3, L(R2) cuts
across the interior of R1 and R3 and L(R3) meets only the interior of R2. For
the moment, we ignore the fact that L(R1) meets R1 along the boundary of
R1 and R2. Similarly, the intersections L(R2)∩R2, L(R3)∩R1 and L(R3)∩R2
are non-empty but are contained in the boundaries of the rectangles. Thus
one would hope to set up an equivalence with the subshift of finite type ΣB

where the transition matrix B is given by

B =


 0 1 1

1 0 1
0 1 0


 .
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Fig. 4.3.

Fig. 4.4. The action of L on the Markov partition.

There are obvious problems with this, however. For one thing, none of the
fixed points (. . . 111 . . .), (. . . 222 . . .), and (. . . 333 . . .) are allowed sequences
in ΣB, yet we know that there is a fixed point in T , namely [0]. Moreover,
there is an ambiguity in our assignment of sequences when the point or one
of its images lies on one of the boundaries of a rectangle.

To remedy these problems, we will work with a quotient of the subshift.
Suppose a point p lies on the stable boundary of R2 ∩ R3. Let S(p) =
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(. . . s0s1s2 . . .) be a sequence naturally associated to p. Since p ∈ R2 ∩ R3,
we must have either s0(p) = 2 or s0(p) = 3. Now L(p) lies in the intersection
R1 ∩ R2, as we see in Fig. 4.5.

Fig. 4.5.

Subsequent images of p hop back and forth between R2∩R3 and R1∩R2.
Now let us return to S(p). If s0(p) = 2, then s1(p) is either 1 or 2. But
2 cannot follow 2, so s1 = 1. Continuing this argument, we must have
S(p) = (. . . s−1.2121 . . .). On the other hand, if s0(p) = 3, then we must
have S(p) = (. . . s−1.3232 . . .). This means that the two possible choices
(. . . s−2s−1.2121 . . .) and (. . . s−2s−1.3232 . . .) must represent the same point
in T , i.e., these sequences should be identified.

More generally, sequences of either form

(. . . sk−1sk2121 . . .)

(. . . sk−1sk3232 . . .)

should also be identified, as they represent points which eventually land on
W s[0].

There are two ambiguities in Wu[0]. We leave it to the reader to check,
using Fig. 4.6, that the pair of sequences of the form

(. . . 1212sksk+1 . . .)

(. . . 2121sksk+1 . . .)
should be identified, as should sequences of the form

(. . . 2323sksk+1 . . .)

(. . . 3232sksk+1 . . .).
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Fig. 4.6.

Now, let Σ̃B denote the “quotient” of the subshift of finite type obtained
by making all of the above identifications. Note that σ is naturally defined
on Σ̃B. We leave it to the reader to check that S gives a one-to-one and onto
map from T to Σ̃B which conjugates L with σ. That is,

T
L→ T

S ↓ ↓ S

Σ̃B
σ→ Σ̃B.

Remarks.
1. All points of the form (. . . 1212 . . .), (. . . 2121 . . .), (. . . 2323 . . .), and
(. . . 3232 . . .) should be regarded as identical in Σ̃B. Since σ(. . . 1212 . . .) =
(. . . 2121 . . .), it follows that these are the sequences which represent the fixed
point at [0].
2. The only identifications in the above procedure occur on W s[0] and
W u[0], where the dynamics of L are relatively straightforward. All of the
other periodic points for L occur in the complement of these two sets. Ad-
mittedly, W s[0] and Wu[0] are dense in T . Nevertheless, S is well-behaved
on the complement and completely describes the dynamics there.
3. We will not discuss the continuity of S as the identifications in Σ̃B mean
that the topology on the sequence space is different from the usual one.

The Markov partition constructed above is simultaneously quite general
and quite special. It is special because the elements of the partition are
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actual rectangles; all we really needed was that the boundaries of the ele-
ments of the partition lie in appropriate stable and unstable sets. The use of
known stable and unstable sets as above to construct Markov partitions is a
completely general operation. All that is necessary is that the map preserve
these sets. For example, the vertical rectangles used in the construction of
the horseshoe is a Markov partition for the associated Cantor set Λ. Note
that no identifications in the sequence space are necessary in this case since
there are no overlapping rectangles.

Exercises

1. Let LA be a hyperbolic toral automorphism. Prove that:
a. transverse homoclinic points are dense in T ;
b. all points in T are nonwandering (in the sense of Exercise 1.7.2.);
c. homoclinic points are not recurrent points (in the sense of Exercise

1.7.3.).
2. One may define an n-dimensional torus Tn in exact analogy with our con-
struction of the two-dimensional torus in this section. That is, let [x1, . . . , xn]
denote the set of all equivalence classes of points in Rn under the equivalence
relation

(x1, . . . , xn) ∼ (y1, . . . , yn)

if and only if xj − yj is an integer for each j. The n-torus is then simply the
set of all such equivalence classes of points in Rn. Similarly, one may define
a hyperbolic toral automorphism on Tn by starting with a matrix A which
satisfies the conditions in Definition 4.1. Note that the stable and unstable
sets need no longer be curves in Tn.

a. Prove that the induced hyperbolic toral automorphism on Tn has
dense periodic points.

b. Prove that if [p] ∈ Tn, then W s[p] and Wu[p] are dense in Tn.
c. Prove that a hyperbolic toral automorphism is chaotic on Tn.

3. Prove that Tn is homeomorphic to the n-fold cross product

S1 × . . . ×︸ ︷︷ ︸
n factors

S1.

4. Consider the map A:Rn → Rn given by A(x) = 2x. A induces a map
on T n exactly as in the case of a hyperbolic toral automorphism, but the
induced map is no longer a diffeomorphism.

a. Prove that periodic points are dense for this map.
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b. Prove that eventually fixed points are dense.
c. Prove that this map is chaotic on T n.

5. Let
A =

(
2 1
1 1

)
.

Construct a Markov partition for LA.
6. Let LA be a hyperbolic toral automorphism on T . Let [p] ∈ W s[0]∩W u[0]
be a homoclinic point. Let �s be the segment in W s[0] connecting [0] to [p]
and let �u be a similar segment in W u[0]. Construct a rectangle R containing
�s with sides in stable and unstable sets.

a. Show that there is an integer n such that Ln
A(R) ⊃ �u.

b. Prove that we may choose [p] so that Ln
A: R → Ln

A(R) is topologically
conjugate to the linear map which produced the horseshoe in §2.3.

§2.5 ATTRACTORS

In this section, we introduce a third type of dynamical phenomenon
which is higher dimensional in nature, the attractor. Roughly speaking,
an attractor is an invariant set to which all nearby orbits converge. Hence
attractors are the sets that one “sees” when a dynamical system is iterated
on a computer. Thus far, all of the attractors we have encountered have
been fixed or periodic points. Here we introduce two new and much more
complicated attractors, the solenoid and the Plykin attractor. These are
examples of a special type of attractor known as a transitive or hyperbolic
attractor. We will see that these attractors are similar in many respects to
the horseshoe map and the hyperbolic toral automorphisms. For example,
there is a set on which the map is chaotic and, through each point in this set,
there passes a stable and an unstable set. Since these are familiar phenomena,
we will leave many of the details in the verification to the reader.

The solenoid is an attractor which is contained in a “solid” torus. This
space is defined as follows. Let S1 be the unit circle and let B2 be the unit
disk in the plane; that is

B2 = {(x, y) ∈ R2|x2 + y2 ≤ 1}.

The Cartesian product D = S1 × B2 is a solid torus in R3. Its boundary
is a torus as described in the previous section. To define the solenoid, we
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consider the map F which maps D strictly inside itself by the formula:

F (θ, p) = (2θ,
1
10

p +
1
2
e2πiθ)

where p ∈ B2 and e2πiθ = (cos(2πθ), sin(2πθ)) ∈ S1.
Geometrically, F may be described as follows. Let θ∗ ∈ S1. The disk

B(θ∗) which is given by θ = θ∗ and p arbitrary is mapped by F into another
disk given by B(2θ∗). The image of this disk is a disk of radius 1/10 with
center at the point 1

2(cos(2θ∗), sin(2θ∗)) in B(2θ∗). See Fig. 5.1. The disk
located at θ = θ∗ + π is also mapped into the disk given by θ = 2θ∗, but
its image is a small disk of radius 1/10 diametrically opposite the image of
B(θ∗) in B(2θ∗).

Fig. 5.1. Construction of the solenoid.

Globally, F may be interpreted as follows. In the θ coordinate, F is
simply the doubling map of the circle discussed in Example 3.4 of Chapter
One. In the B2-direction, F is a strong contraction, with image a disk whose
center depends on θ. The image of this disk is one-tenth the size of the
original disk. Thus the image of D is another solid torus inside D which
wraps twice around D. See Fig. 5.2.

The fact that F stretches in one direction and contracts in the others is,
by now, a familiar phenomenon, reminiscent of both the horseshoe and the
hyperbolic toral automorphisms.

Strictly speaking, F is not a diffeomorphism, since it is not onto. We
think of D as a piece of a larger space and the action of F on D as just a
portion of the dynamics. Since F (D) ⊂ D, it follows that all forward orbits
of points in D lie in D. Regions like D have a special name.

Definition 5.1. A closed region N ⊂ Rn is a trapping region for F if F (N)
is contained in the interior of N .
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Fig. 5.2. The image of the solid torus under F is a
solid torus which wraps twice around itself.

Since F (N) is closed and F (N) ⊂ N , it follows that the sets F n(N) are
all closed and nested for n ≥ 0. Therefore

Λ =
⋂

n≥0
Fn(N)

is a closed, nonempty set. Λ is the set of points whose full orbits, both
forward and backward, remain in N for all time. Λ will be our attractor.

Proposition 5.2. Λ is an invariant set.

Proof. We have

F (Λ) = F (
∞⋂

n≥0
Fn(N)) =

∞⋂
n≥1

F n(N) ⊂ N.

But ∞⋂
n≥0

Fn(N) =
∞⋂

n≥1
F n(N)

since the intersections are nested. Hence F (Λ) = Λ and Λ is invariant.
Invariance under F −1 follows as well.

q.e.d.

Definition 5.3. A set Λ is called an attractor for F if there is a neighborhood
N of Λ for which the closure of N is a trapping region and

Λ =
⋂

n≥0
F n(N).
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Fig. 5.3. The intersection of the Fn(D) yields a Cantor set.

There are other definitions of attractors in common use. Ours is by no
means standard, although it is perhaps the simplest. This definition suffers
the defect that it does not produce a single, indecomposable attractor. For
example, the “stadium” D for the horseshoe map of §2.3 is a trapping region.
The attractor is easily seen to consist of two pieces, the fixed point in D1
and the invariant Cantor set together with all of its unstable sets. On the
other hand, the region D1 ⊂ D is also a trapping region, but this time the
attractor is quite different; it is simply the fixed point in D1.

To remedy this, we introduce the following terminology:

Definition 5.4. Λ is a transitive attractor for F if F is topologically tran-
sitive on Λ.

Our goal is to show that the attractor Λ = ∩n≥0F
n(D) for the above

map is a transitive attractor and that, moreover, the dynamics of F on Λ
are chaotic.

Let us investigate the nature of the set Λ. Since F stretches D in the S1-
direction and contracts it by a factor of 1/10 in the B2-direction, it follows
that F (D) is a torus of radius 1/10 which wraps around D twice. Applying
F to F (D), we see that F 2(D) is a torus of radius 1/100 in the B2-direction
which wraps around D four times and which is properly contained in F (D).
Inductively, F n(D) is a torus of radius 1/10n which wraps around D exactly
2n times and which is contained in F n−1(D).

In each B(θ∗), we therefore see that Fn(D) is a nested collection of 2n

disks, as in Fig. 5.3. We have seen this process before: the nesting of the
F n(D) yields a Cantor set in each disk B(θ∗).
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If we perform the above construction in a cylindrical piece of D of the
form

C = {(θ, p)|θ1 ≤ θ ≤ θ2},

we see that C ∩ Λ is locally the Cartesian product of a Cantor set and an
arc in the S1-direction. The arcs are given by the nested intersection of the
2n tubes in F n(D) ∩ C. Since each iteration of F contracts the radius of
these tubes by 1/10, it is intuitively clear that these arcs are continuous.
Nevertheless, we will prove this later by completely different methods. In
fact, it may be shown that these curves are smooth. The set Λ is called a
solenoid .

We now turn to the dynamics of F on and near Λ. Let x ∈ Λ. Suppose
x = (θ0, p0) where θ0 ∈ S1 and p0 ∈ B2. Let F n(x) = (θn, pn). Consider the
disk B(θ0). Since F maps B(θ0) inside B(2θ0), it follows that F n(B(θ0)) ⊂
B(θn). Moreover, each application of F contracts B(θ0) by a factor of 1/10.
Therefore, if y ∈ B(θ0), it follows that Fn(y) ∈ B(θn) and |Fn(x)−Fn(y)| <
1/10n, where the absolute value is the usual one in R2. Consequently, B(θ0)
is part of the stable set W s(x) associated to x.

Similarly, the arc constructed above as the nested intersection of tubes
about x is part of the unstable set for x which we denote by Wu(x). This
follows since F−1 contracts distances along the arc by a factor of 1/2. We thus
see that all of the points in Λ come equipped with stable and unstable sets,
just as in the cases of the horseshoe and the hyperbolic toral automorphisms.

Proposition 5.5.
1. F has sensitive dependence on initial conditions on Λ.
2. Per(F ) is dense in Λ.
3. F is topologically transitive on Λ.

Proof. For sensitive dependence on initial conditions, we simply note that
any point on the unstable arc associated to x ∈ Λ separates from x by a
factor of 2 in the θ-direction when F is iterated. To prove density of periodic
points, let U be any neighborhood of x = (θ0, p0). There exists δ > 0 and
n ∈ Z such that the tube C in F n(D) defined by

C =
{
(θ, z)||θ − θ0| < δ, |z − p0| <

1
10n

}

is completely contained in U . We will produce a periodic point in C. To
accomplish this, recall that Fn(D) wraps around D exactly 2n times. We
may choose m so that 2mδ > 2n+1 · 4π. Hence Fm(C) is a tube lying in
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Fig. 5.4. The image Fm(C) cuts through C.

Fn(D) and wrapping around D at least 2 · 2n times. It follows that Fm(C)
cuts completely across C at least once as shown in Fig. 5.4. Hence there
exists θ∗ with |θ∗ − θ0| < δ such that Fm(B(θ∗)∩C) ⊂ B(θ∗)∩C. It follows
that Fm has a fixed point in B(θ∗) ∩ C.

Similar arguments also prove topological transitivity. For if x, y,∈ Λ
and U and V are neighborhoods of x and y, we may then produce tubes as
above in Fn(D) about x and y which are completely contained in U and V
respectively. Sufficiently many iterations of these tubes produce a θ∗ such
that B(θ∗) ∩ U is a disk which is mapped into V . It is easy to check that
there is a point in Λ inside B(θ∗) ∩ U .

q.e.d.
As in our previous examples, we may use symbolic dynamics to model

the dynamics of F on Λ. This time we use a different construction first
introduced by R.F. Williams. Let g:S1 → S1 be the doubling map g(θ) = 2θ.
Our model for Λ will be the inverse limit space

Σ = (S1 g← S1 g← S1 . . .).

More precisely

Σ = {θ = (θ0θ1θ2 . . .)|θj ∈ S1 and g(θj+1) = θj}.

Thus Σ consists of all infinite sequences of points of S1 subject to the re-
striction that θj+1 is one of the two preimages of θj for each j. Unlike our
previous sequence spaces, elements of Σ are not sequences whose entries are
integers. Rather, the entries in this case are points in the circle. For example,
the sequences

(0 0 0 . . .)

(0π
π

2
π

4
π

8
. . .)
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(
4π

3
2π
3

4π

3
2π

3
4π
3

. . .)

all belong to Σ. Using the doubling map g, it is helpful to think of these
sequences as backward orbits:

0 g← 0 g← 0 g← . . .

0 g← π
g← π

2
g← π

4
g← . . .

4π

3
g← 2π

3
g← 4π

3
g← 2π

3
g← . . . .

We define a metric on Σ much as we did on Σn. If Θ = (θ0θ1θ2 . . .) and
Ψ = (ψ0ψ1ψ2 . . .) are points in Σ, we define the distance between them to be

d[Θ,Ψ] =
∞∑

j=0

|e2πiθj − e2πiψj |
2j

where |α − β| denotes the usual Euclidean distance in the plane. It is easy
to check that d is a metric on Σ. Moreover, two points are “close” if each of
their first few entries are close together.

On Σ, we have a natural map, a version of the shift given by

σ(θ0θ1θ2 . . .) = (g(θ0)θ0θ1θ2 . . .).

As in previous sections, σ is easily seen to be a homeomorphism. The inverse
of σ is given by a map that resembles our previous shift (but which is a
homeomorphism)

σ−1(θ0θ1θ2 . . .) = (θ1θ2θ3 . . .).

As with our previous models, this map is also easy to understand dy-
namically. If θ is a periodic point for g, with period n, then the repeating
sequence (θ, gn−1(θ), gn−2(θ), . . . , g(θ), θ, . . .) is clearly periodic for σ with
period n as well. As with our other examples, it is easy to check that σ
has periodic points which are dense in Σ and that σ has a dense orbit. See
Exercises 3-4.

How are σ and F related? Let π: D → S1 be the natural projection, i.e.,
π(θ, p) = θ. For any point x ∈ Λ, the map S: Λ → Σ given by

S(x) = (π(x), πF−1(x), πF−2(x), . . .)
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is well defined. This follows since we can invert F on Λ even though F−1 is
not defined on all of D. Clearly, S ◦ F = σ ◦ S, since F is the doubling map
in the S1-direction.

We leave it as an exercise for the reader to prove that:

Theorem 5.6. S gives a topological conjugacy between F on Λ and σ on Σ.

Let us use this conjugacy to fill in the gap above where we failed to prove
that the unstable sets in Λ were curves. For simplicity, let us prove this only
for the fixed point which corresponds to the sequence 0 = (000 . . .). One
checks easily that this is the point θ = 0 and p = (5

9 , 0) ∈ B2.

Proposition 5.7. The unstable set of 0 consists of precisely those sequences
of the form

(x,
x

2
,

x

22 ,
x

23 , . . .)

for any x ∈ R.

Proof. By definition, we have σ−1(x, x
2 , x

4 , . . .) = (x
2 , x

4 , x
8 , . . .). It therefore

follows that σ−n(x, x
2 , x

4 , . . .) → 0 as n → ∞. For the converse, we first
recall that if θ ∈ S1, then g−1(θ) is one of θ

2 or θ
2 + π. Now let Θ =

(θ0θ1θ2, . . .) ∈ W u(0). There exists N such that if n ≥ N, |θn| < 1. Hence
θN , θN+1, θN+2, . . . all lie in the right hand semicircle in S1. It follows that
θN+1 = θN/2, for the other preimage (θN/2) + π lies in the left semicircle.
Continuing, we find θN+k = θN

2k and θN−k = 2kθN so that Θ assumes the
desired form.

q.e.d.
Consequently, the unstable set of 0 in Σ is parametrized by R. Under the

conjugacy given by S, the unstable set of the fixed point is the continuous
curve which is the image of W u(0).

The inverse limit construction works well for a class of attractors known
as expanding attractors. These attractors are characterized by uniform ex-
pansion within the attractor itself. As in the case of the solenoid, such
attractors can be suitably modeled by an inverse limit of a lower dimen-
sional expanding map like θ → 2θ on S1. The main difference in the general
case is that the model space is more complicated than S1; usually it is a
“branched manifold.” This concept was introduced by R.F. Williams. We
will illustrate it via an example of an attractor due to Plykin. Rather than
give a formula for this map, we will define it geometrically, exactly as we did
for the horseshoe.
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Consider the region R in the plane depicted in Fig. 5.5. R is a region with
three open half-disks removed. We equip R with a foliation whose leaves are
intervals as shown in Fig. 5.5. Recall that this means that there is a line
segment through each point of R (the leaf) and that the leaves are mutually
disjoint.

Fig. 5.5. The region R for the Plykin attractor.

Define a map P : R → R as shown in Fig. 5.6. We require that P preserve
and contract the leaves of the foliation. Note that P (R) is contained in the
interior of R so that R is a trapping region. The set Λ = ∩n≥0P

n(R) is the
Plykin attractor.

To understand the dynamics of P , we first note that any two points on
the same leaf behave identically under iteration of P . Since the leaves are
contracted, any two such points tend to the attractor in the same asymptotic
manner. Thus, to understand the action of P globally, it suffices to under-
stand the action of P on the leaves. We thus collapse each leaf to a point as
in Fig. 5.7, and examine the induced map on this space. Observe that the
collapsed space Γ has “branch” points along the singular leaves �1 and �2.
It is called the branched “manifold” for P . We may describe the dynamics
on Γ by describing how each of the four intervals α, β, γ, and δ are mapped.
From Fig. 5.7 we see that the induced map g on Γ preserves the two vertices
and maps the other intervals this way:

α → β
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Fig. 5.6. The Plykin attractor.

β → β + δ + γ − δ − β

γ → α

δ → δ − γ − δ

where the signs indicate orientations or directions in which the image crosses
the given interval. We may construct such a map so that g expands all
distances in the branched manifold Γ.

In the solenoid, a similar construction would have collapsed the B2-
directions (the leaves of the foliation of D ) onto a circle (an unbranched
manifold) on which the map g is simply θ → 2θ. Since we understand the
dynamics of θ → 2θ completely, we were able to use the inverse limit con-
struction to analyze the solenoid as well. The same process works for the
Plykin attractor.

For example, we may prove that g: Γ → Γ has dense periodic points as
follows. Let I be any “subinterval” in Γ. Since g is expanding, it follows that
there exists n such that gn(I) covers one of the four intervals α, β, γ, δ. Now
one may check easily that there is an integer m such that gm(ξ) ⊃ Γ where ξ
is any of the α, β, γ, or δ. Indeed, g(α) = β, g(β) ⊃ γ, and g(γ) = α so that
g3(α) ⊃ α. Thus we conclude that gm+n(I) ⊃ Γ and so it follows that there
is a periodic point in I. Using the inverse limit construction, one may then
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Fig. 5.7. The branched manifold for the Plykin attractor.

equate the action of P on Λ with that of the shift on Σ = Γ g← Γ g← Γ . . . .
We leave the details to the reader.

Remarks.

1. Much recent research has been devoted to the topic of “strange attrac-
tors.” These are loosely defined as attractors which are topologically distinct
from either a periodic orbit or a “limit cycle” (i.e., an invariant, attracting
simple closed curve which arises often in ordinary differential equations). We
prefer the term “hyperbolic” attractor for attractors like the solenoid and the
Plykin example. Indeed, since we have succeeded in analyzing these maps
completely, there is nothing whatsoever “strange” about them.

2. There are, however, some attractors which have thus far defied analysis.
One of these is the Hénon attractor as described in Exercise 10. Numerical
evidence indicates that this simple quadratic map of the plane possesses a
transitive attractor, although this has never been proved rigorously. We urge
the reader with access to computer graphics to plot successive iterates of a
point under this map. The result is always qualitatively the same (disre-
garding the first few iterates) and always fascinating! We will return to this
map in §2.9, where we will approach it from a different point of view.

Exercises

1. Construct a Markov partition for the solenoid.
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2. Prove that

d[Θ, Ψ] =
∞∑

j=0

|θj − ψj |
2j

is a metric on Σ, where Θ and Ψ are points in Σ.

In the following exercises, let σ: Σ → Σ be the shift map on the inverse limit
space S1 g← S1 g← S1 . . . for the solenoid.

3. Prove that the periodic points of σ are dense in Σ.

4. Prove that σ has a dense orbit.

5. Prove that σ is a homeomorphism.

6. Prove that S: Λ → Σ gives a topological conjugacy between F and σ.

7. Let P : R → R be the Plykin map as defined in Fig. 5.6 and let Λ ⊂ R
be the Plykin attractor with associated branched manifold Γ.

a. Prove that P is chaotic on Λ.
b. Prove that P on Λ is topologically conjugate to the shift map on the

inverse limit space
Γ g← Γ g← Γ g← . . . .

8. Let g: Γ → Γ be the expanding map on the branched manifold as defined
in Fig. 5.7. Find a formula for the number of periodic points for g of period
n.

9. The DA map. In this series of exercises, we show how the hyperbolic
toral automorphism of the previous section may be modified to produce a
map with a transitive attractor on a torus.

a. Consider the linear map L given by

x1 =
1
2
x

y1 = 2y.

Explicitly construct a map φ depending on x alone such that the
phase portrait of φ ◦ L is as shown in Fig. 5.8.

b. Use bump functions as described in §1.2 to construct a new map ψ
which agrees with φ on a small neighborhood U of 0, which is the
identity map outside of a neighborhood V which contains U , and
which preserves horizontal lines in R2. Show that ψ may be chosen
so that the phase portrait of ψ ◦ L is as depicted in Fig. 5.9.
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Fig. 5.8.

Fig. 5.9.

c. Apply this technique on a neighborhood of [0] in the torus to the
hyperbolic linear automorphism generated by the matrix

 1 1

1 0




as described in §2.4. The resulting map F is called a DA-map. Prove
that this map is a diffeomorphism.

d. Show that there is a neighborhood W of 0 in T such that F maps
T − W strictly inside itself.

e. Prove that Λ = ∩∞
u=0F

n(T − U) is a transitive attractor by showing
that the original stable foliation for the hyperbolic toral automor-
phism is still preserved on T − U by F .

10. The Hénon Attractor . Consider the diffeomorphism of the plane given
by

x1 = 1 + y − 1.4x2

y1 = 0.3x.
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This is a specific case of the Hénon map which we will study in §2.9.
a. Consider the quadrilateral Q in the plane whose vertices are given

by the four points (−1.33, 0.42), (1.32, 0.133), (1.245,−0.14), and
(−1.06,−0.5). Prove that F (Q) ⊂ Q.

b. Using a computer, compute 10,000 iterates of a point in Q. Plot the
last 9,000 points. Note that the resulting picture appears to be the
same no matter which (random) initial point is chosen. This is the
“strange attractor” of Hénon whose structure is still not completely
understood.

11. The Lozi Attractor . Consider the piecewise linear map of the plane
given by

L

(
x

y

)
=


 1 + y − A|x|

Bx




where A and B are parameters. Assume that A and B satisfy 0 < B <
1, A > B + 1 and 2A + B < 4. Under these conditions,

a. Prove that L has two fixed points, one of which lies in the first quad-
rant. We call this point p.

b. Prove that the unstable set W u(p) contains a straight line which
intersects the x-axis at a point q and the y-axis at L−1(q).

c. Let � denote the straight line segment in W u(p) connecting q and
L−1(q). Sketch L(�) and L2(q).

d. Construct the triangle T with vertices at q, L(q), and L2(q). Prove
that T is a trapping region for L.

e. Use a computer to plot the forward orbits of points in T . The result
is a picture of the Lozi attractor.

§2.6 THE STABLE AND UNSTABLE MANIFOLD THEOREM

The examples discussed in the last three sections all share one common
feature. Through each point in the “interesting” set where chaotic dynam-
ics is present, there passes both a stable and an unstable set. The crucial
property that gives this behavior is hyperbolicity , which we investigate in
more detail in this and the next section. Recall that a linear map is hy-
perbolic if it has no eigenvalues on the unit circle. In the hyperbolic case,
we distinguished two invariant subspaces through 0, the stable and unstable
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subspaces W s and W u. Points in W s converge to 0 under forward iteration
of the map, whereas points in Wu converge to 0 under backward iteration.
Our goal in this section is to show that nonlinear dynamical systems behave
similarly, at least near hyperbolic fixed and periodic points.

Definition 6.1. A fixed point p for F :Rn → Rn is called hyperbolic if
DF (p) has no eigenvalues on the unit circle, where DF (p) is the Jacobian
matrix at p. If p is periodic of period n, then p is hyperbolic if DFn(p) has
no eigenvalues on the unit cricle.

We remark that, for periodic points, the eigenvalues of the Jacobian
matrix of Fn are the same at each point on the orbit. Indeed, we have
F n ◦ F j = F j ◦ Fn. By the Chain Rule, we therefore have

DFn(F j(p)) · DF j(p) = DF j(Fn(p)) · DFn(p).

If F n(p) = p, this says that

(DF j)−1(p) · DF n(F j(p)) · DF j(p) = DFn(p).

Hence the eigenvalues of DF n at p and at F j(p) are the same.
There are three types of hyperbolic periodic points: sinks, sources, and

saddles.

Definition 6.2. Let F n(p) = p.
1. p is a sink or attracting periodic point if all of the eigenvalues of

DFn(p) are less than one in absolute value.
2. p is a source or repelling periodic point if all of the eigenvalues of

DFn(p) are greater than one in absolute value.
3. p is a saddle point otherwise, i.e., if some of the eigenvalues of DFn(p)

are larger and some are less than one in absolute value.

Case 3 distinguishes higher dimensional systems from the one-dimensional
case studied in Chapter One.

For the remainder of this section, we will consider only fixed points in R2.
The extension of the results below to periodic points is straightforward. The
extension to higher dimensions is more complicated, but the techniques below
do work in Rn. The arguments used in the plane are geometrically much
clearer than in higher dimensions, and the technical details are significantly
easier.
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Theorem 6.3. Suppose F has an attracting fixed point at p. Then there is
an open set about p in which all points tend to p under forward iteration of
F .

Remark. The largest such open set in R2 is called the stable set or the
basin of attraction of p and is denoted by W s(p).

Proof. By conjugating with T (x) = x + p, we may assume that p = 0 and
that DF (0) assumes one of the following forms:


 λ 0

0 µ


 with |λ|, |µ| < 1.


 λ ε

0 λ


 with ε > 0 but arbitrarily small, |λ| > 1.


 α −β

β α


 with α2 + β2 < 1.

See Corollary 1.11 and Proposition 1.12. It follows easily that if v �= 0, then

|DF (0)v| < |v|.

Hence there is a neighborhood U of 0 in which this inequality holds for each
unit vector e1 and e2 and thus for all v �= 0, i.e., |DF (x)v| < |v| if x ∈ U .

Now choose δ so that if |p| < δ, then p ∈ U . We claim that |F (p)| < |p| if
p �= 0. Let γ(t) = t · p. We have F (γ(0)) = 0, F (γ(1)) = F (p), and γ(t) ∈ U
for each t which satisfies 0 ≤ t ≤ 1. Hence

|F (p)| = |
∫ 1

0
(F ◦ γ)′(t)dt|

≤
∫ 1

0
|(F ◦ γ)′(t)|dt

=
∫ 1

0
|DF (γ(t))γ′(t)|dt

<
∫ 1

0
|γ′(t)|dt

since γ′(t) �= 0. Hence |F (p)| < |p|.
q.e.d.



§2.6 THE STABLE AND UNSTABLE MANIFOLD THEOREM 217

Corollary 6.4. Suppose F has a repelling fixed point at p. Then there is an
open set containing p in which all points tend to p under backward iteration
of F .

We call the largest such set the unstable set and denote it by W u(p). We
turn now to the case of saddle points. Since one of the eigenvalues is larger
than one and one smaller (in absolute value), we expect regions in which F
contracts and expands near 0. Unlike the situation which occurs for linear
maps, this expansion and contraction does not result in a pair of invariant
straight lines which pass through the fixed point. However, there are a pair
of curves which play this role in the nonlinear case. This is the content of
the stable and unstable manifold theorems, whose proof is the main topic of
this section.

Theorem 6.5. Suppose F has a saddle point at p. There exists ε > 0 and
a smooth curve, i.e., a C1 curve

γ: (−ε, ε) → R2

such that
1. γ(0) = p.
2. γ′(t) �= 0.
3. γ′(0) is an unstable eigenvector for DF (p).
4. γ is F−1-invariant.
5. F−n(γ(t)) → p as n → ∞.
6. If |F−n(q) − p| < ε for all n ≥ 0, then q = γ(t) for some t.

This complicated statement deserves some explanation. The curve γ is
called the local unstable manifold at p. We use the word “manifold” since,
in general, γ is not a straight line. Intuitively, the local unstable manifold
is a curve through the fixed point which is mapped inside itself by F−1. All
points on the local unstable manifold tend to the fixed point under iteration
of F−1. See Fig. 6.1.

Remarks.
1. The theorem is true for stable sets as well as with the obvious modifica-
tions. On the local stable manifold, all points tend to the fixed point under
iteration of F .
2. In dimensions greater than two, the curve γ is replaced by a local “sur-
face” parametrized near p by a smooth map φ:U → Rn where U is an open
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Fig. 6.1. The local stable and unstable manifolds.

subset of Rk and k is the number of eigenvalues greater than one in absolute
value. Our proof of Theorem 6.5 can be adapted to this higher dimensional
setting, but this involves a number of additional technical details. Hence we
will content ourselves with the simplest possible case.
3. It can be shown that γ is C∞. More generally, if F is Cr, then so is γ.

The local stable and unstable manifolds have global counterparts defined
as follows.

Definition 6.6. Let p be a hyperbolic fixed point for F and suppose that
γu is the local unstable manifold at p. The unstable manifold at p, denoted
by W u(p), is given by

W u(p) =
⋃

n>0
F n(γu).

Similarly, if γs is the local stable manifold at p, then the stable manifold is
defined by

W s(p) =
⋃

n>0
F−n(γs).

Thus the stable and unstable manifolds are invariant curves which em-
anate from the fixed or periodic point. We have seen these types of curves
before; the examples of the previous three sections all featured stable and
unstable manifolds through each of the periodic points as well as through
certain of the non-periodic points. As these examples show, the stable and
unstable manifolds may wind about in very complicated ways. This need not
be the case always. Before turning to the proof of Theorem 6.5, let us give
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several more examples of stable and unstable manifolds. These examples are
atypical since we can explicitly compute the invariant manifolds. Usually,
this is impossible as there is no formula for these sets: Theorem 6.5 guaran-
tees their existence but gives no prescription for finding them. Nevertheless,
these examples are instructive in that they show the global behavior of these
sets quite explicitly.

Example 6.7. Let F :R2 → R2 be given by

F

(
x

y

)
=

( 1
2x

2y −15
8 x3

)
.

Note that F (0) = 0 and that

DF (0) =


 1

2 0

0 2


 .

Consequently, 0 is a saddle point. Clearly,

F

(
0
t

)
=

(
0
2t

)

so the y-axis serves as the unstable manifold. Also

F

(
t

t3

)
=

( 1
2t

(1
2t)3

)

so the curve y = x3 serves as the stable manifold. Indeed, F is topologically
conjugate to the linear map

L

(
x

y

)
=


 1

2 0

0 2


 (

x

y

)

via the diffeomorphism

h

(
x

y

)
=

(
x

x3 − y

)
.

That is, F ◦ h = h ◦ L. Note that h maps the stable and unstable subspaces
for L onto the stable and unstable manifolds for F .
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Fig. 6.2. The phase portrait of the map
F

(
θ1
θ2

)
=

(
θ1+ε sin θ1

θ2+ε sin θ2 cos θ1

)
.

Example 6.8. Let T be the torus parametrized by θ1, θ2 in the square
0 ≤ |θi| ≤ 2π with sides identified. Define

F

(
θ1

θ2

)
=

(
θ1 + ε sin θ1

θ2 + ε sin θ2 cos θ1

)
.

If ε is sufficiently small, F is a diffeomorphism. There are four fixed points:
saddles at (0, π) and (π, π), a sink at (π, 0), and a source at (0, 0). The phase
portrait is shown in Fig. 6.2.

Note that the unstable manifold of (0, π) matches up exactly with the
stable manifold of (π, π). The stable manifold of (0, π) emanates from the
repelling fixed point at (0, 0), while the unstable manifold of (π, π) lies in the
basin of attraction of the attracting fixed point at (π, 0).

On the torus, the dynamics may also be pictured as in Fig. 6.3. The
stable and unstable manifolds lose their linear character in this presentation.

Example 6.9. A simpler diffeomorphism of the torus is given by

G

(
θ1

θ2

)
=

(
θ1 − ε sin θ1

θ2 + ε sin θ2

)
.

Again there are four fixed points: two saddles at (0, 0) and (π, π), a sink at
(0, π), and a source at (π, 0). The phase portrait is shown in Fig. 6.4.
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Fig. 6.3. The phase portrait of F on the torus.

Fig. 6.4. The phase portrait of
G

(
θ1
θ2

)
=

(
θ1−ε sin θ1
θ2+ε sin θ2

)
.

In this case, the unstable manifolds of both saddles tend to the sink,
while their stable manifolds come from the source.

The behavior of the stable and unstable manifolds play an important role
in the question of the structural stability of a higher dimensional dynamical
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system. Suppose F and G are diffeomorphisms of the plane which are topo-
logically conjugate via a homeomorphism h. If p is a hyperbolic saddle point
for F which is fixed, then G has a fixed point at h(p). This point need not
be hyperbolic, but it must have stable and unstable manifolds. Indeed, it is
easy to check that, if x ∈ W s(p), then

lim
n→∞ Gn(h(x)) = h(p).

Similarly, h also preserves the unstable manifold.
We turn now to the proof of the stable and unstable manifold theorem.

The geometric idea behind the proof is quite simple and elegant, although it
can be lost among the technical details. Let us illustrate this idea with an
example where the result is already known, a linear map. Suppose F (x) = Ax
where

A =


 λ 0

0 µ




with 0 < µ < 1 < λ. From the results of §2.2 we know the unstable set is
the x-axis, on which vectors are stretched by a factor of λ.

Let us consider the square |x|, |y| ≤ ε for some ε > 0. Let γ(x) = (x, h(x))
be a smooth curve in the plane which passes through 0 and whose tangent
line always has slope between ±1

2 , i.e., |h′(x)| < 1
2 . Apply F to such a curve.

The result is a new curve which hugs the x-axis more closely and which
has slope closer to zero. If we restrict this curve to the box |x|, |y| ≤ ε, we
see that γ has been transformed into another curve which is closer to the
x-axis. Repeated applications of this procedure yield curves which approach
the segment of the unstable set lying in |x| ≤ ε. See Fig. 6.5.

Now we turn to the proof of the unstable manifold theorem; the stable
manifold theorem will follow by applying this result to F −1. We will show
that the behavior of a nonlinear map near a hyperbolic fixed point is similar
to that of a hyperbolic linear map near 0.

Let us make some preliminary simplifications of F . First, by conjugating
F with the translation T (x) = x + p, we may assume that the fixed point is
at 0. Second, we may assume that

DF (0) =


 λ 0

0 µ




by conjugating F with a linear map which puts DF (0) into standard form.
Third, we will assume that λ > 2 and 0 < µ < 1

2 . This may be accomplished
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Fig. 6.5. Application of the graph transform in the case of
a linear map.

by considering Fn if necessary. After proving that Fn has an unstable set,
we will show how to deduce that this curve is also the unstable set for F .

We will denote a point q in R2 by coordinates (x0, y0) and its F -image
by (x1, y1). That is,

x1 = F1(x0, y0)
y1 = F2(x0, y0).

Similarly, (x−1, y−1) = F−1(x0, y0). We denote a tangent vector at q by
(ξ0, η0)q and its image under the derivative of F by (ξ1, η1)F (q). That is,

DF (q)
(

ξ0

η0

)
q

=
(

ξ1

η1

)
F (q)

.

In coordinates
ξ1 =

∂F1

∂x
(q)ξ0 +

∂F1

∂y
(q)η0

η1 =
∂F2

∂x
(q)ξ0 +

∂F2

∂y
(q)η0.

We will also need the notion of a sector bundle. Define

Su(q) = {(ξ0, η0)q | |η0| ≤ 1
2
|ξ0|}

Ss(q) = {(ξ0, η0)q | |ξ0| ≤ 1
2
|η0|}.
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Fig. 6.6. The sector bundles Su(q) and Su(q).

See Fig. 6.6.
Note that DF (0) preserves Su(0) in the sense that if v ∈ Su(0), then

DF (0)v ∈ Su(0). Moreover, if

v =
(

ξ0

η0

)

we note that |ξ1| = λ|ξ0| > 2|ξ0|. Similarly, (DF (0))−1 preserves Ss(0) and
we have |η−1| = µ−1|η0| > 2|η0|.

Since F is at least C1, the Jacobian matrix DF (x) varies continuously
with x and there must therefore be a neighborhood of 0 in which the above
properties hold. More precisely, there exists ε > 0 such that, if |x|, |y| ≤ ε,
then

1. DF (x, y) preserves Su(x, y) and DF−1(x, y) preserves Ss(x, y), i.e.,
DF (x, y)v ∈ Su(F (x, y)) whenever v ∈ Su(x, y).

2. If (ξ0, η0) ∈ Su(x, y), then |ξ1| ≥ 2|ξ0|.
3. If (ξ0, η0) ∈ Ss(x, y), then |η−1| ≥ 2|η0|.

The concept of preservation of sector bundles is one that arises whenever
hyperbolicity is verified; it is illustrated geometrically in Fig. 6.7.

We will now concentrate on the square B given by |x|, |y| ≤ ε. We say
that the curve γ(x) = (x, h(x)) is a horizontal curve in B if

1. h is defined and continuous for |x| ≤ ε
2. h(0) = 0
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Fig. 6.7. Preservation of the sector bundles.

Fig. 6.8. A horizontal and a vertical curve in B.

3. for any x1, x2 with |xi| ≤ ε, |h(x1) − h(x2)| ≤ 1
2 |x1 − x2|. Note that

γ(x) is the graph of h(x) which lies in B and is depicted in Fig. 6.8.
Reversing the roles of x and y yields a definition of a vertical curve.

Lemma 6.10. If γ(x) = (x, h(x)) is a horizontal curve, then the image
F (γ(x)) meets B in a horizontal curve.

Proof. We first observe that if (x1, y1) = F (ε, h(ε)), then x1 ≥ 2ε. This
follows immediately from the fact that |ξ1| > 2|ξ0|. Similarly, if (x1, y1) =
F (−ε, h(−ε)), then x1 < −2ε. Clearly, F (0) = 0 so that the image curve
passes through the origin. Finally, suppose that (x0, y0) and (x′

0, y
′
0) lie on

F (x, h(x)) and |y′
0−y0| > 1

2 |x′
0−x0|. Choose α1, α2 such that F (α1, h(α1)) =

(x0, y0) and F (α2, h(α2)) = (x′
0, y

′
0). Consider the straight line segment �

connecting (α1, h(α1)) to (α2, h(α2)). The tangent vector to � lies in Su at
each point along �. Now F maps � to a smooth curve connecting (x0, y0) to
(x′

0, y
′
0). By the Mean Value Theorem, there is a point on this curve where



226 HIGHER DIMENSIONAL DYNAMICS

the tangent vector has slope larger than 1
2 . This contradicts the fact that

DF preserves the sector bundle Su.
q.e.d.

Thus, for each horizontal curve γ in B, the action of F defines a new
horizontal curve in B which we denote by Φγ. Φ is called the graph transform,
since it takes the graph of h(x) into the graph of another function.

Let H denote the set of all horizontal curves in B. We may thus regard
Φ as a map Φ:H → H. A fixed point for H is a horizontal curve which is
transformed into itself, i.e., whose F -image covers itself. Such a fixed point
is therefore our candidate for the unstable set.

Let γ1(x) = (x, h1(x)) and γ2(x) = (x, h2(x)) be horizontal curves in B.
Define the distance

d[γ1, γ2] = sup
|x|≤ε

|h1(x) − h2(x)|.

Lemma 6.11. If γ1 and γ2 are horizontal curves, then d[Φγ1, Φγ2] <
νd[γ1, γ2] for some ν with 0 < ν < 1.

Proof. We argue geometrically. Suppose that |Φγ2(x) − Φγ1(x)| ≥ |h2(z) −
h1(z)| for some x and for all z with |z| ≤ ε. We will show that this leads to
a contradiction.

Let � = P (x) be the vertical line connecting Φγ1(x) to Φγ2(x). Consider
the curve F−1(�) which connects the point (z1, h1(z1)) = γ1(z1) to γ2(z2) =
(z2, h2(z2)). Since DF−1 preserves the sectors Ss at each point of �, it follows
that the tangent vectors to F−1(�) always lie in this sector. As a consequence,
F−1(�) itself lies in the cone shaped region with vertex at (z1, h(z1)) and
boundary lines of slope ±2. See Fig. 6.9.

In particular, we have

|h2(z2) − h1(z1)|
|z2 − z1|

≥ 2.

Moreover, since DF−1 expands vertical components of these tangent vectors
by a factor of at least two, we have

|h2(z2) − h1(z1)| ≥ 2|Φγ2(x) − Φγ1(x)|.

By assumption we have

|h2(z1) − h1(z1)| ≤ |Φγ2(x) − Φγ1(x)|.
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Fig. 6.9.

Consequently

|h2(z2) − h2(z1)| ≥ |h2(z2) − h1(z1)| − |h2(z1) − h1(z1)|

≥ 1
2
|h2(z2) − h1(z1)|

≥ |z2 − z1|.

By the Mean Value Theorem, there exists a point z with |h′
2(z)| ≥ 1. This

contradicts the fact that γ2 is a horizontal curve and proves the lemma.
q.e.d.

It follows that Φ is a contraction on H. Since H is a closed subset of the
set of all continuous maps from the interval |x| ≤ ε to itself, it is a technical
fact that H is a complete metric space and, consequently, Φ has a unique
fixed point in H. We refer to any of the standard texts in analysis for a proof
of this fact.

Let γu be the horizontal curve fixed by Φ. This curve clearly passes
through the origin, and if (x0, y0) is a point on γu with x0 �= 0, we have
|x1| > |x0|. Hence points on γu either leave B under iteration of F or else
map into γu further from 0. It follows that γu ⊂ W u(0).

Lemma 6.12. Let (x0, y0) ∈ B and suppose (x0, y0) does not lie on γu.
Then there is a positive integer n for which F−n(x0, y0) does not lie in B.
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Proof. Let � be the vertical line connecting (x0, y0) to a unique point in γu.
Now apply the cone argument as in the previous lemma: the vertical height
of F−1(�) must be doubled. Continuing this process yields the result.

q.e.d.
As a consequence of this lemma, γu is precisely the local unstable set for

F . We have shown that γu is a continuous curve in B. In fact, γu is C∞ if F
is. Rather than prove this fact, we will simply sketch a proof that γu is C1.

To do this, we need more terminology. We define a horizontal line field
to be a pair of functions ζ(x) = (γ(x),M(x)), where

1. γu is a horizontal curve in B.
2. M is a continuous real-valued function with |M(x)| ≤ 1

2 for all x with
|x| ≤ ε.

We view ζ(x) geometrically as a horizontal curve together with a collec-
tion of straight lines. One straight line passes through each point of γ(x),
and this line has slope M(x). Since |M(x)| ≤ 1

2 , each straight line has a
direction vector which lies in Su. See Fig. 6.10.

Fig. 6.10. A horizontal line field.

We let H1 denote the set of all horizontal line fields in B. We define the
distance between two horizontal line fields ζi = (γi,Mi) for i = 1, 2 by

d[ζ1, ζ2] = sup
|x|≤ε

(|γ1(x) − γ2(x)|, |M1(x) − M2(x)|).

A new, fancier graph transform is then given by

Φ1(ζ) = (Φγ, M̂)
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where Φγ is the usual graph transform of the horizontal curve γ, and M̂
is the slope of the line field transformed by DF . More precisely, if γ(x) =
(x, h(x)) and v is a vector with slope M(x), then M̂ is the slope of the vector
DF (γ(x))v.

As before, it is clear that Φ1 maps H1 inside itself. Moreover, Φ1 is an
example of a “fiber” contraction. That is, if ζ1 = (γ, M1) and ζ2 = (γ,M2)
are horizontal line fields based on the same horizontal curve γ(x), then

d[Φ1(ζ1), Φ2(ζ2)] < d[ζ1, ζ2].

When this result is coupled with the contraction in the γ-direction, it can
be shown that there is a unique fixed point for Φ1 in H1. This fixed point is
the horizontal curve γu found above, together with a preferred direction at
each point. One can prove that this direction is in fact tangent to the curve,
but we will omit the technical details.

This completes the proof of the Unstable Manifold Theorem in cases
where the eigenvalues satisfy appropriate conditions. Recall that we as-
sumed at the outset that the unstable eigenvalue λ satisfied λ > 2 and the
stable eigenvector µ satisfied 0 < µ < 1

2 . If this is not the case, then we
have shown that a sufficiently high power of F , say F−n, has an invariant
unstable set given by γu. Clearly, if this set is not also F−1-invariant, then
at least F−1(γu) is also invariant under F−n. This, however, contradicts the
uniqueness of γu.

Exercises

1. Consider the diffeomorphism Qλ of the plane given by

x1 = ex − λ

y1 = −λ

2
arctan y

where λ is a parameter.
a. Find all fixed points and periodic points of period 2 for Qλ.
b. Classify each of these points as sinks, sources, or saddles.
c. If the point is a saddle, identify and sketch the stable and unstable

manifolds.
2. Consider the diffeomorphism F of the plane given in polar coordinates
by

r1 = λr + βr3

θ1 = θ +
2π

n
+ ε sin(nθ)



230 HIGHER DIMENSIONAL DYNAMICS

where ε > 0 is small, λ > 1 and β < 0.
a. Identify and classify all periodic points of F .
b. Show that the circle γ given by r =

√
(1 − λ)/β is invariant under F .

c. Identify and sketch the stable and unstable manifolds of the saddle
points of F .

3. Let p1, p2 be saddle points for a diffeomorphism F . Recall that a point
q is a heteroclinic point for F if

lim
n→∞ F n(q) = p1

lim
n→∞ F−n(q) = p2.

That is, heteroclinic points are forward and backward asymptotic to dis-
tinct saddle points. If p1 = p2, q is called homoclinic (note how the higher
dimensional definition of homoclinic differs from that given in §1.16). See
Definition 4.6. Prove that topological conjugacy preserves homoclinic and
heteroclinic points.
4. Identify the heteroclinic points in Example 6.8.
5. Using a bump function, show that the diffeomorphism in Example 6.8
may be perturbed so that it has a finite number of heteroclinic orbits. Hence
intervals of homoclinic or heteroclinic points may be destroyed by a small
perturbation. Conclude that this map is not structurally stable.
6. A homoclinic or heteroclinic point is called transverse if the respective
stable and unstable manifolds meet at an angle, i.e., their tangent vectors are
not collinear at the heteroclinic point. Show that the example in Exercise 5
may be perturbed so that the heteroclinic points are transverse.

Linear automorphisms of the sphere. Let S2 denote the two-dimensional
sphere in R3, i.e.,

S2 = {x ∈ R3 | |x| = 1}.

Let

A =


 1 0 0

0 2 0
0 0 3




and define the map

F (x) = FA(x) =
Ax

|Ax| .

FA is called a linear automorphism of S2.
7. Prove that F maps R3 − {0} onto S2.
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8. Prove that the restriction of F to S2 is a diffeomorphism of the sphere.
9. Let e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). Prove that the ±ej

are the fixed points for F .
10. Compute the Jacobian matrix DF (±ej). Prove that DF (±ej) has an
eigenvalue equal to 0 with corresponding eigenvector ej .
11. Prove that each of the other vectors ei, i �= j, are also eigenvectors for
DF (±ej). Evaluate the corresponding eigenvalues.
12. Conclude that ±e1 is a source, ±e2 is a saddle, and ±e3 is a sink.
13. Define φ:S2 → R by φ(x) = |A−1x|2. Prove that φ(F (x)) ≤ φ(x).
14. Prove that φ(F (x)) = φ(x) if and only if x = ±ej for some j. The
function φ is called a gradient function since it decreases along all orbits of
F except the fixed points. F itself is called gradient like.
15. Use the gradient function to prove that the phase portrait of F is as
depicted in Fig. 6.11.

Fig. 6.11. The dynamics of F .

16. Discuss the dynamics of the linear automorphism of the sphere deter-
mined by the matrix

A =


 cos θ sin θ 0

− sin θ cos θ 0
0 0 2


 .

17. Let Sn = {x ∈ Rn+1||x|2 = 1} be the unit sphere in Rn+1. Let A be
the diagonal matrix with entries 1, 2, . . . , n + 1. Describe the dynamics of
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the linear automorphism of the sphere induced by A. Describe the stable
and unstable manifolds of each fixed point for this map.

§2.7 GLOBAL RESULTS AND HYPERBOLIC SETS

The goal of this section is to amalgamate many of the previous notions
from dynamical systems theory to present an overview of the global theory
of dynamics in higher dimensions. Recall that the structurally stable dif-
feomorphisms in one dimension were quite simple dynamically. There were
only finitely many periodic points, all of which were hyperbolic. All other
points simply lie on orbits which tended from one of these periodic orbits to
another under iteration of the map.

In higher dimensions, the situation is somewhat more complicated. As we
have seen in our three fundamental examples, it is entirely possible to have
infinitely many periodic points as well as other, more complicated types of
recurrence such as dense orbits or recurrent points. All of these points lie
in the set on which the map has “interesting” dynamics. This is the chain-
recurrent set.

Definition 7.1. Let F be a diffeomorphism. A point x is chain recurrent for
F , if, for any ε > 0, there are points x = x0, x1, x2, . . . , xk = x and positive
integers n1, . . . , nk such that

|Fni(xi−1) − xi| < ε

for each i.

The sequence of points x0, . . . , xn is called an ε-chain or a pseudo-orbit.
Intuitively, an ε-chain is almost an orbit in the sense that we allow small
jumps or errors at iterations n1, n1 + n2, etc. A point x is chain recurrent
if we can find ε-chains with arbitrarily small jumps. Note that the ε-chains
always begin and end at x.

Example 7.2. Any periodic point is chain recurrent. All points in the
Cantor set associated to the Smale horseshoe are chain recurrent, as are all
points in the attractors discussed in §2.5. See Exercises 1-3.

Note that chain recurrence is a weaker notion than that of recurrence.
Recall that x is a recurrent point for F if, for any ε > 0, there exists n > 0
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such that |Fn(x) − x| < ε. That is, a recurrent point is chain recurrent with
an ε-chain consisting of just x itself.

There are points which are chain recurrent but not recurrent. For ex-
ample, if p is a hyperbolic periodic point and q ∈ W u(p) ∩ W s(p), then q is
chain recurrent but not recurrent. Indeed, both the forward and backward
orbit of q tends to p, so that the orbit of q never piles up on itself. Points
such as q are called homoclinic points. If q tends to distinct saddle points,
then q is called a heteroclinic point.

Let Λ = Λ(F ) denote the set of points which are chain recurrent; Λ
is called the chain recurrent set. The proof of the following proposition is
straightforward.

Proposition 7.3.
1. Λ is a closed subset of R2.
2. If F and G are topologically conjugate via a homeomorphism h, then

h maps Λ(F ) to Λ(G).

Often, the chain recurrent set of a map breaks up into various pieces
which may be analyzed by techniques similar to those in §2.2-2.5. There
may be transitive attractors or subshifts of finite type embedded as pieces
of the dynamics. This leads to the concept of hyperbolic set which we will
discuss below. But before that we note that the chain recurrent set may be
quite simple. It may in fact be finite. Indeed, Morse-Smale diffeomorphisms
of the circle feature a finite number of periodic points as the chain recurrent
set. All other points tend from one periodic orbit to another and are not in
the chain recurrent set. One major result from Chapter One was the fact
that Morse-Smale maps were structurally stable. In higher dimensions, we
need to impose additional conditions in the definition of Morse-Smale map
to achieve this result.

Definition 7.4. Let p1 and p2 be saddle points for F . W s(p1) and W u(p2)
are transverse if either

1. W s(p1) ∩ Wu(p2) = φ, or
2. q ∈ W s(p1) ∩ Wu(p2), in which case the tangents to W s(p1) and

W u(p2) at q are not collinear.

Transverse intersections of the stable and unstable manifolds are a nec-
essary condition for structural stability.
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Fig. 7.1. One branch of W u(p±) matches up
with a branch of W s(0).

Example 7.5. Consider the diffeomorphism F

x1 =
1
2
(x + x3)

y1 = y
( 2

1 + 2x2

)
.

This map has phase portrait as depicted in Fig. 7.1. Note that there are
three saddle points, at p+ = (1, 0), p− = (−1, 0) and 0. One branch of
W u(p±) matches up exactly with W s(0). We may break these connections
as follows.

Let φ be a bump function defined on the closed interval [0, 1]. That is,
φ(x) = 0 if x �∈ (0, 1) and φ(x) > 0 if x ∈ (0, 1). Consider the diffeomorphism
g defined by

x1 = x

y1 = y + φ(|x|).

Note that g simply moves points in the strips 0 < |x| < 1 in a vertical
direction. That is, we think of g as giving a gentle push in the direction of
the positive y-axis. Now consider the perturbed map F̂ = g◦F . Let S be the
strip 0 < x < 1 and y ≥ 0. For the unperturbed map, the lower boundary
of S was preserved. This is not true for F̂ however; all points on the lower
boundary of S are mapped strictly inside S. Moreover, if 0 ≤ x < 1/

√
2,

then y1 > y. Consequently, points in this region tend to ∞ under iteration
of F̂ . It follows that the stable manifold of 0 does not enter the strip S.
Arguing similarly, it can easily be shown that the unstable manifold for F̂ at
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Fig. 7.2. The perturbed stable and unstable manifolds.

p+ lies entirely in S and so the connection has been broken. This is depicted
in Fig. 7.2. A similar phenomenon occurs in the strip −1 < x < 0 as well.

Thus one necessary condition for structural stability is the transversality
of all stable and unstable manifolds of saddle points. One important class
of maps which have this property are the higher dimensional Morse-Smale
maps. These are defined as follows.

Definition 7.6. A diffeomorphism is called Morse-Smale if
1. The chain recurrent set is a finite set of periodic points, all of which

are hyperbolic.
2. All stable and unstable manifolds of saddle points are transverse.

It is an important result first proved by Palis that Morse-Smale diffeomor-
phisms on compact surfaces (like the sphere or the torus) are C1-structurally
stable.

As we emphasized in Chapter One, hyperbolicity is another necessary
ingredient for structural stability. It is an easy exercise using the Implicit
Function Theorem to show that hyperbolic fixed and periodic points must
persist under small perturbation (see Exercise 7). But, since a higher dimen-
sional diffeomorphism may involve more than simply periodic recurrence, we
need to extend the notion of hyperbolicity to all of the chain recurrent set.
That is, we need to introduce the notion of a hyperbolic set.

Let us begin with an example.

Example 7.7. Consider the diffeomorphism F of the plane given in polar
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coordinates by
r1 = 2r − r3

θ1 = θ + 2πω.

Clearly, the origin is a repelling fixed point for F and the circle r = 1 is
invariant. Graphical analysis of the function r1 = 2r − r3 shows that all
non-zero points tend to this circle under iteration. On the circle, the map
reduces to rotation by angle 2πω. It follows that the chain recurrent set
consists of 0 and the unit circle.

This situation is easily destroyed. We first make a preliminary perturba-
tion that makes ω rational, say p/q. Then we perturb again by composing
with the map

r1 = r

θ1 = θ + ε sin(qθ).

The resulting map is

r1 = 2r − r3

θ1 = θ + 2π
(

p

q

)
+ ε sin(qθ).

The circle r = 1 is still invariant, but this time the map on the circle is a
Morse-Smale map as discussed in §1.15. Indeed, there are a pair of periodic
orbits of period q, one attracting and one repelling. The chain recurrent set
is easily seen to consist of these two orbits plus the fixed point at 0.

To define a hyperbolic set, we first recall the situation near a hyperbolic
fixed point. Basically, there were two ingredients to hyperbolicity, a rate of
expansion or contraction, given by the eigenvalues of the Jacobian matrix
at the point, and a direction of expansion or contraction, given by the as-
sociated eigenvector. We saw that this direction was mirrored in R2 by the
stable and unstable manifolds, on which the map behaved just like its linear
counterpart given by the Jacobian matrix. In the horseshoe, the hyperbolic
toral automorphism, and the attractors, we saw that a much larger set –
not just the periodic points – admitted similar stable and unstable behavior.
These are examples of hyperbolic sets which we now define.

For simplicity, we will confine our attention to the plane.

Definition 7.8. Let F :R2 → R2 be a diffeomorphism. A set Λ is called a
hyperbolic set for F if

1. For each point p ∈ Λ, there are a pair of lines Es(p) and Eu(p) in
the tangent plane at p which are preserved by DF (p).
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2. Es(p) and Eu(p) vary continuously with p.
3. There is a constant λ > 1 such that |DF (p)(v)| ≥ λ|v| for all v ∈

Eu(p) and |DF−1(p)v| ≥ λ|v| for all v ∈ Es(p).
Es(p) is called a stable line and Eu(p) is an unstable line.

Both the horseshoe and the hyperbolic toral automorphism admit hy-
perbolic sets: the invariant Cantor set in the case of the horseshoe and the
entire torus in the case of the hyperbolic toral automorphism. The solenoid
shows that the concept of a hyperbolic set can be extended to higher dimen-
sions: the disks given by θ = θ∗ play the role of stable planes in this case.
As we have seen in all of these examples as well as in the quadratic map in
Chapter One, hyperbolic sets provide the setting on which chaotic dynamics
may occur.

As in the case of a fixed point, the dynamics near a point in a hyperbolic
set is straightforward. The following Theorem gives the existence of local
stable and unstable manifolds for hyperbolic sets and can be verified using
the tools of the previous section.

Theorem 7.9. Let F :R2 → R2 be a diffeomorphism. Let Λ be a closed,
invariant, hyperbolic set contained in a bounded region of R2. There exists
ε > 0 such that, for any p ∈ Λ, there is a smooth curve γp: [−ε, ε] → R2

satisfying
1. γp(0) = p
2. γ′

p(t) �= 0
3. γ′

p(0) lies along the unstable line Eu(p)
4. F−1(γp) ⊂ γF−1(p)
5. |F−n(γp(t)) − F−n(p)| → 0 as n → ∞.

Moreover, the curves γp depend continuously on p.

Thus, the γp behave exactly the same as the local unstable manifolds
of fixed points. The proof of the above Theorem is similar but much more
complicated than that of the Unstable Manifold Theorem for a point, so
we will omit the details. A similar statement obviously holds for the stable
manifolds.

For our examples, verifying hyperbolicity was rather easy since we as-
sumed linearity in at least one of the directions. That is, we wrote down
explicitly the stable and unstable lines. Most nonlinear dynamical systems
are not given in such a useful fashion. In these cases, verifying hyperbolicity
is more complicated. The following ideas give a criterion for hyperbolicity
that is often useful.
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For a vector v �= 0 in R2 or R3, we define the α-cone about v to be the
set of all vectors which make an angle ≤ α with v or −v. For example, the
π/4-cone about e1 in R2 consists of all vectors of the form

w =
(

ξ

η

)

where |ξ| ≥ |η|. The π/4-cone about e1 in R3 consists of all vectors of the
form

W =


 ξ

η
ν




with |ξ| ≥
√

η2 + ν2. The vector v is called the core of the α-cone.

Definition 7.10. Let U be an open set. A cone-field C(p) on U is the
assignment of an α-cone to each point p ∈ U such that

1. α = α(p) varies continuously with p;
2. the core vector vp varies continuously with p.

We visualize a cone field as a collection of tangent vectors at each point
p ∈ U . The sector bundles of the previous section are special cases of cone
fields with core either e1 or e2.

Example 7.11. Recall the solid torus D = S1 × B2 which carried the
solenoid. Any point in D has coordinates (θ, x, y). Any tangent vector to D
may be written in the form

αe + v

where e is a unit vector tangent to S1 and

v =
(

ξ

η

)

is a vector in R2. A natural cone field on D is defined by
√

ξ2 + η2 ≤ |α|.

In the proof of the stable and unstable manifold theorem, we identified
two cone fields which were preserved and expanded by either DF or DF−1.
This condition guaranteed the existence of a unique line through each point
which was invariant under DF or DF−1. The same is true in general.
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Theorem 7.12. Let F :R2 → R2. Let Λ be a closed, F -invariant subset
contained in a bounded region of R2. Let U be a neighborhood of Λ and
suppose there exist mutually disjoint cone fields Cs and Cu for which we
have

1. α ≤ π/4.
2. DF (Cu(p)) ⊂ Cu(F (p)); DF−1(Cs(p)) ⊂ Cs(F−1(p)).
3. If v ∈ Cu(p), then |DF (p)v| ≥ 2|v|.
4. If w ∈ Cs(p), then |DF−1(p)w| ≥ 2|w|.

Then Λ is a hyperbolic set and Eu ⊂ Cu and Es ⊂ Cs.
Remark. This cone condition is relatively easy to verify in a given nonlinear
dynamical system, since it depends on only one iteration of the map, not on
all iterations. We will illustrate this in §2.9 when we discuss the Hénon map.

A more general class of diffeomorphisms consists of those whose chain
recurrent sets are hyperbolic. It can be shown that the chain recurrent sets
of these maps decompose into a union of invariant subsets on which the
map is chaotic (at least on bounded surfaces or subsets of the plane.) If the
stable and unstable manifolds of these sets all meet transversely, we have a
natural generalization of the class of Morse-Smale maps. These maps, known
as Axiom A dynamical systems, can be shown to be structurally stable yet
possess chaotic “pieces” like our three basic examples. This class has been
the subject of much contemporary research.
Exercises
1. Prove that all points in the Cantor set associated to the Smale horseshoe
map are chain recurrent.
2. Prove that every point in the torus is chain recurrent under a hyperbolic
toral automorphism.
3. Prove that all points in the attractors discussed in §2.5 are chain recur-
rent.
4. Prove that the chain recurrent set is closed and preserved by topological
conjugacy.
5. Prove that the linear automorphism of S2 induced by the matrix

 1 0 0
0 2 0
0 0 3




is Morse-Smale (see Exercises 6.7–6.16).
6. Identify the chain recurrent set for the linear automorphism of S2 in-
duced by the matrix 

 cos θ sin θ 0
− sin θ cos θ 0

0 0 2


 .
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7. Let F be a diffeomorphism and suppose that 0 is a hyperbolic fixed point
for F . Prove that there is a neighborhood U of 0 and an ε > 0 such that, if
G is C1-ε close to F , then G has a unique hyperbolic fixed point in U .

§2.8 THE HOPF BIFURCATION

As in the case of one-dimensional maps, the lack of hyperbolicity is usu-
ally a signal for the occurrence of bifurcations. In one-dimensional systems,
these occur when the eigenvalue at a periodic point is either +1 (the sad-
dle node bifurcation) or −1 (the period-doubling bifurcation). For higher
dimensional systems, these types of bifurcations also occur, but there are
other possible bifurcations of periodic points as well. The most typical of
these is the Hopf bifurcation, which we will describe in this section. Be-
fore that, however, we give an example of saddle node and period-doubling
bifurcations in the plane.

Example 8.1. Let Qλ be the map of the plane given by

x1 = ex − λ

y1 = −λ

2
arctan y.

Qλ is really a combination of two one-dimensional maps: one in the x-
direction and one in the y-direction. Using the results of §1.12, it is easy
to see that the map x → ex − λ undergoes a saddle node bifurcation when
λ = 1 while

y → −λ

2
arctan y

undergoes a period doubling at λ = 2. Putting the phase portraits of these
two maps together allows us to describe the phase portrait for Qλ. When 0 <
λ < 1, Qλ moves all points to the right, so that there are no periodic points
whatsoever. For 1 < λ < 2, Qλ admits two fixed points, an attracting fixed
point and a saddle. Both fixed points undergo period-doubling bifurcations
at λ = 2, so that there are two orbits of period 2 for λ > 2. As λ passes
through 2, the attracting fixed point becomes a saddle, while the saddle
becomes a repellor. See Fig. 8.1.

This situation is typical. When λ = 1, a saddle node bifurcation occurs
at the fixed point 0. At this λ-value, DQλ(0) has an eigenvalue 1 and another
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Fig. 8.1. The phase portraits of Q2
λ.

eigenvalue less than one in absolute value. When λ = 2, there are two fixed
points for Qλ, both of which have one eigenvalue −1 and another eigenvalue
not equal to one in absolute value.

In higher dimensional systems, there is an additional manner in which a
fixed or periodic point may fail to be hyperbolic. When the eigenvalues of
the Jacobian matrix are complex but of absolute value one, the fixed point
is non-hyperbolic. As long as these eigenvalues are not ±1, a different type
of bifurcation generally occurs.

Analysis of the dynamics of linear maps shows that a bifurcation must
occur when an eigenvalue crosses the unit circle. Consider the family of maps

Lλ

(
x

y

)
= λ

(
cos α − sinα
sinα cos α

) (
x

y

)

where λ > 0 is the parameter. If α �= 0 and λ < 1, then 0 is an attracting
fixed point and all points spiral toward the origin under iteration of Lλ. If
λ > 1, then 0 is a repellor. Thus a change has occurred at λ = 1. At
the bifurcation value, each circle centered at the origin is invariant under
L1. Moreover, the dynamics on these circles are different depending upon
whether cosα + i sinα induces a rational or irrational rotation of the circle.
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While a bifurcation does occur in the linear family Lλ when the eigen-
values cross the unit circle, the dynamics of this family are quite special at
the bifurcation value. In nonlinear dynamics, the bifurcation occurs in a
somewhat different manner. Let us first consider several examples.

Example 8.2. Let Fλ denote the family of planar maps given by

Fλ

(
x

y

)
= gλ(x, y)

(
cos α − sinα
sinα cos α

) (
x

y

)

where gλ(x, y) = λ+β(x2 +y2). Here β is a nonzero constant which we may
treat as a second parameter. When β = 0, Fλ becomes the linear family Lλ.

Note that 0 is a fixed point for each λ, and that the Jacobian matrix of
Fλ satisfies

DFλ(0) = λ
(

cos α − sinα
sinα cosα

)
.

Hence, at λ = 1, the eigenvalues cross the unit circle as before. It follows
that 0 is an attracting fixed point for λ < 1 and a repelling fixed point for
λ > 1. To study the bifurcation which occurs at λ = 1, it is most efficient
to change to polar coordinates. In polar coordinates, the map assumes the
form

r1 = λr + βr3

θ1 = θ + α.

This map has an invariant circle given by r =
√

(1 − λ)/β provided we have
(1 − λ)/β > 0. Thus there are two cases. Let us first assume that β < 0.
Then, if λ > 1, the invariant circle is defined and all points in a neighborhood
of the circle are attracted to it. This is easily seen by graphical analysis of
the function r → λr + βr3. See Fig. 8.2. The phase portrait for this map is
depicted in Fig. 8.3.

Therefore we see that, at the bifurcation value, an invariant circle is born
as the attracting fixed point becomes repelling. This is a Hopf bifurcation.

When β > 0, the situation is somewhat different. For all λ < 1, 0 is
attracting and the invariant circle is repelling. As λ passes through 1, the
invariant circle and the origin coalesce, and the fixed point at 0 becomes
repelling. We leave the details to the reader (see Exercise 1).

A more general example of a Hopf bifurcation is provided by the following
family of maps

Fλ

(
x

y

)
= gλ(x, y)

(
cos(α + γr2) − sin(α + γr2)
sin(α + γr2) cos(α + γr2)

) (
x

y

)
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Fig. 8.2. The graph of r → λr + βr3.

Fig. 8.3. The phase portrait of the map Fλ.

where γ is a non-zero constant. In polar coordinates, this family of maps
goes over to

r1 = λr + βr3

θ1 = θ + α + γr2.

One may check that this family undergoes a similar bifurcation as above (see
Exercise 2). We will meet this family again, after we discuss normal forms.
Note that, in each of the above cases, the dynamics on the invariant circle is
simply rotation through a fixed angle. The map on the invariant circle need
not be so simple, however, as the following example shows.
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Example 8.3. Consider the map given in polar coordinates by

r1 = λr + βr3

θ1 = θ + ν + ε sin(kθ)

for an integer k and ε small. As above, the circle r =
√

(1 − λ)/β is invariant.
On the circle, the map is given by θ → θ+ν + ε sin(kθ). This is the standard
family which was discussed at length in §1.14. If ν = 2π

k , one may check
easily that there are exactly two periodic orbits of period k for ε small.

The bifurcations in the previous two examples were easy to compute
since the map in each case assumed an especially simple form. We cannot
expect an arbitrary map to be so simple. We can, however, via a series of
transformations, put the map into a form which is much easier to work with
in general. This procedure is called transforming a map to normal form.
Since we will use similar procedures at several points in the sequel, we will
belabor the point somewhat in this section in order to save time later.

We begin with a family Fµ of nonlinear maps of the form

x1 = αx − βy + O(2)

y1 = βx + αy + O(2)

where µ = α + iβ is the parameter. The expression O(2) indicates terms of
degree two or more, i.e., terms of the form

α1x
2 + α2xy + α3y

2 + β1x
3 + β2x

2y + etc.

We think of all of the coefficients αj , βj , etc. as depending upon µ. Note
that, using Taylor series, any nonlinear map which fixes the origin may be put
in such a form with polynomial terms of degree ≤ n plus a small remainder.

Note that DFµ(0) has eigenvalues α ± iβ = µ, µ. Since we will work
primarily with maps for which µ is complex, it will help to consider this map
in complex coordinates rather than in the x, y-variables.

Define
z = x + iy

z = x − iy.

We will work with these complex variables instead. Note that any informa-
tion given in z, z coordinates may be immediately transferred to the x, y-
variables since

x =
1
2
(z + z)
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y =
1
2i

(z − z)

is the inverse transformation.
In these new variables, the map assumes the simple form

z1 = x1 + iy1

= αx − βy + i(βx + αy) + . . .

= (α + iβ)(x + iy) + . . .

= µz + . . .

and, similarly,
(z)1 = µz + . . .

where the dots now indicate higher order terms in z and z. The advantage
here is that we now may work with the single equation for z1 rather than
the pair of equations for x1 and y1. The equation for z1 is obtained from
that of z1 by complex conjugation. Then, by the above remark, x1 and
y1 are obtained immediately. We remark that the coefficients in the above
expression may be complex.

To work successfully with maps in this form, it is almost essential to
eliminate some of the higher order terms. This can be achieved by a judicious
choice of a conjugacy near the origin. The result is a normal form for the
map. In our case, the result is:

Theorem 8.4. Suppose Fµ(z) = µz+O(2) where µ is not a kth root of unity
for k = 1, . . . , 5. Then there is a neighborhood U of 0 and a diffeomorphism
L on U such that the map L−1 ◦ Fµ ◦ L assumes the form

z1 = µz + β(µ)z2z + O(5).

Here, the notation O(5) means terms of degree five or more.

Remark. Note how simple the nonlinear terms of the normal form are.
There are no quadratic and fourth order terms, and only one cubic term.
Most of the nonlinearity is confined to the relatively small fifth order terms;
the dominant nonlinear term is the remaining third order term.

This Theorem will be proved in a sequence of propositions, each one
leading to a simpler form for the map. The proof of each of the propositions
is a straightforward calculation; the trick is to guess the desired outcome at
the start.
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Proposition 8.5. Let Fµ be a map of the form

z1 = µz + α1z
2 + α2zz + α3z

2 + O(3)

where µ �= 0. Then there exists a neighborhood U1 of 0 and a diffeomorphism
L1:U1 → R2 such that L−1

1 ◦ Fµ ◦ L1 assumes the form Gµ given by

z1 = µz + O(3)

provided µ is not a kth root of unity where k = 1 or 3.

Proof. Let L1 be given by

L1(z) = z + a1z
2 + a2zz + a3z

2

where
a1 =

−α1

µ(1 − µ)

a2 =
−α2

µ(1 − µ)

a3 =
−α3

µ − µ2 .

Since DL1(0) = I, it follows from the Inverse Function Theorem that L1 is a
diffeomorphism in a neighborhood U1 of 0. Note that the expressions for a1
and a2 presuppose that µ �= 1, while the expression for a3 necessitates that
µ is not a cube root of 1. One then computes immediately that

Fµ ◦ L1 = L1 ◦ Gµ

by simply comparing first and second order terms.
q.e.d.

The reader may wonder how the form of L1 was chosen. One finds L1 by
simply assuming (or hoping) that Fµ may be transformed into Gµ, and then
solving the conjugacy equation for the terms comprising L1. The algebra is
straightforward.

Proposition 8.6. Let Gµ be a map of the form

z1 = µz + β1z
3 + β2z

2z + β3zz2 + β4z
3 + O(4)

where µ �= 0. Then there exists a neighborhood U2 of 0 and a diffeomorphism
L2:U2 → R2 such that L−1

2 ◦ Gµ ◦ L2 assumes the form Hµ given by

z1 = µz + β2z
2z + O(4)
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provided µ is not a kth root of unity for k = 2 or 4.

Proof. Take L2 in the form

L2(z) = z + b1z
3 + b3zz2 + b4z

3

where
b1 =

−β1

µ(1 − µ2)

b3 =
−β3

µ(1 − µ2)

b4 =
−β4

µ − µ3 .

Then one may check easily that Gµ ◦ L2 = L2 ◦ Hµ.
q.e.d.

Remark. The term β2z
2z cannot be removed by adding a term of the form

b2z
2z to L2 since this leads to an equation of the form

b2 =
−β2

µ(1 − µµ)
.

The term 1 − µµ vanishes for any µ on the unit circle, which is precisely the
situation we wish to study. We also note that, if µ4 = 1, the expression

µ − µ3 =
µ4 − 1

µ3

also vanishes. Hence, in this case, the term β4z
3 cannot be removed as well.

The next Proposition is proved exactly as the previous two. We thus
leave this proof to the reader.

Proposition 8.7. Let Hµ be a map of the form

z1 = µz + β2z
2z + O(4)

where µ �= 0. Then there exists a neighborhood U3 of 0 and a diffeomorphism
L3:U3 → R2 such that L−1

3 ◦ Hµ ◦ L3 assumes the form

z1 = µz + β2z
2z + O(5)
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provided µ is not a kth root of unity for k = 3 or k = 5.

Remarks.
1. As in Proposition 8.6, if µ5 = 1, one may check that the term β5z

4

cannot be removed by the above transformation. Hence the normal form in
this case becomes

z1 = µz + β|z|2z + γz4 + O(5)

where β and γ are constants and |z|2 = zz.
2. These three propositions form the basic procedure which allows us to put
a map in normal form. Suppose F :R2 → R2 satisfies F (0) = 0 and DF (0)
has an eigenvalue µ where µk = 1, k > 3. Then a sequence of transformations
allows us to put F in the form

z1 = µz + β1|z|2z + β2|z|4z + . . . + β	|z|2	z + γzk−1 + O(k)

where β1, . . . , β	, γ are constants and � is the fractional part of k−2
2 . This

generalizes the normal form found above when k = 5. See Exercises 4, 5.

The three previous propositions combined yield the proof of Theorem 8.4.
Note that, in polar coordinates, the normal form in Theorem 8.4 becomes

r1 = |µ|r + β(µ)r3 + O(5)

θ1 = θ + α(µ) + γ(µ)r2 + O(5)

where µ = |µ|eiα and β and γ are constants. Here, O(5) indicates terms
containing fifth or higher powers of r. We remark that, up to fifth order
terms, this map is essentially the same as those considered in Example 8.2
above.

We now return to our main goal in this section, the statement of the
Hopf Bifurcation Theorem.

Theorem 8.8. Suppose Fλ is a family of maps depending on a parameter λ
and satisfying

i. Fλ(0) = 0 for all λ.
ii. DFλ(0) has eigenvalues µ(λ), µ(λ) with |µ(0)| = 1 and µ(0) �= kth

root of unity for k = 1, . . . , 5.
iii. d

dλ |µ(λ)| > 0 when λ = 0.
iv. In normal form given by Theorem 8.4, the term β(µ(0)) < 0.
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Then there is an ε > 0 and a closed curve ζλ in the form r = rλ(θ) defined
for 0 < λ < ε and invariant under Fλ. Moreover, ζλ is attracting in a
neighborhood of 0 and ζλ → 0 as λ → 0.

Remarks.
1. The assumption that d

dλ |µ(λ)| > 0 when λ = 0 means that the eigenval-
ues cross from the inside to the outside of the unit circle as λ increases.
2. If we reverse the inequalities in iii and iv above, the Theorem remains
valid. However, after the bifurcation, the invariant circle is repelling while
the origin is attracting. See Example 8.3.

We will not prove this theorem since the details are somewhat technical.
The basic idea, however, is similar in spirit to our proof of the Stable Manifold
Theorem. Hence we will sketch the steps in barest outline.

Let us denote by Nλ the map obtained by dropping the higher order
terms in the normal form for Fλ, i.e., Nλ is given by

r1 = (1 + λ)r + β(λ)r3

θ1 = θ + α(λ) + γ(λ)r2.

As in Example 8.3, Nλ admits an attracting invariant circle Cλ given by
r =

√
−λ/β(λ) provided λ > 0, β(λ) < 0. Consider any other simple closed

curve r = r(θ) in a neighborhood of Cλ. As we showed in Example 8.3, Nλ

attracts this curve toward Cλ. Moreover, if we assume that |r′(θ)| ≤ 1, then
one may check that the image curve has slope strictly less than 1 in absolute
value. That is, Nλ preserves a sector bundle near Cλ as depicted in Fig. 8.4.

Fig. 8.4. The sector bundles near Cλ.
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This allows us to set up a graph transform near Cλ similar to that used
in the proof of the Stable Manifold Theorem. For Nλ, this graph transform
has a unique fixed graph, which is, of course, the invariant circle Cλ. One
then shows that the same procedure also works when the higher order terms
are added to Nλ. The result is a unique attracting invariant closed curve
near Cλ for Fλ for λ sufficiently small and positive.

Exercises

1. Analyze the bifurcation structure of the map

r1 = λr + βr3

θ1 = θ + α

when 0 < λ < 1 and β > 0.

2. Analyze the bifurcation structure of the map

r1 = λr + βr3

θ1 = θ + α + γr2

for β, γ �= 0 and λ > 0.

3. Prove Proposition 8.7.

4. Suppose F (0) = 0 and DF (0) has an eigenvalue µ which satisfies µk = 1.
Prove that, if k = 4, F may be transformed to

z1 = µz + β|z|2z + γz3 + O(4).

If k = 5, show that F may be transformed to

z1 = µz + β|z|2z + γz4 + O(5).

5. Suppose F (0) = 0 and DF (0) has an eigenvalue µ with µk = 1, k > 5.
Show that F may be transformed to normal form:

z1 = µz + β1|z|2z + . . . + β	|z|2	z + γzk−1 + O(k).

where � ≤ k−2
2 .



§2.9 THE HÉNON MAP 251

§2.9 THE HÉNON MAP

This section serves as an illustration of many of the techniques and ideas
introduced in Chapter Two. It consists of a lengthy series of exercises, all of
which deal with the so-called Hénon map. This is a two-parameter family
of maps of the plane which possesses many of the structures and phenom-
ena discussed in this chapter. There are hyperbolic sets, homoclinic points,
bifurcations, horseshoes, “strange attractors” – almost everything we have
discussed and a lot more. As an added bonus, the one-dimensional quadratic
family which played such a prominent role in Chapter One is embedded in
the dynamics as well. Thus we view this section as a recapitulation of all
that has come before. The Hénon map is also an important topic in cur-
rent research, as there are many parameter values for which the map is still
not well understood. Thus we also view this section as an invitation to fur-
ther research in dynamical systems. We mention some important unsolved
problems at the end of the section.

Let H = Ha,b be the map of the plane given by

x1 = a − by − x2

y1 = x.

H depends on two real parameters and is called the Hénon map. Note that
there is only one nonlinear term, so that H is indeed one of the simplest
nonlinear maps in higher dimensions.

1. Compute DH and show that det(DH) = b. Prove that, if b �= 0, H is
invertible by exhibiting H−1.
2. If b = 0, H maps the entire plane onto a parabola P given by x = a−y2.
Prove that the restriction of H to P is topologically conjugate to an old
friend, namely, g(y) = a−y2. (Hint: Project P onto the y-axis and compute
the induced map.)
3. Prove that if 0 < |b| ≤ 1, there exists A, B with |B| > 1 such that Ha,b

is topologically conjugate to H−1
A,B.

As a consequence of these three exercises, it suffices to consider only the
cases 0 < |b| ≤ 1, since b = 0 gives us the quadratic map studied in Chapter
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One (see Exercise 1, §1.7). The case |b| = 1 will be dealt with later. Hence,
for the moment, we assume that 0 < |b| < 1.

4. Compute the fixed points for Ha,b. Prove that for each b there exists
a0 = a0(b) such that

a. if a < a0(b),H has no fixed points;
b. if a = a0(b),H has a unique fixed point;
c. if a > a0(b), H has two fixed points of the form p±(a, b) = p± =

(x±, x±) where x+ > x−.

5. Prove that p− is a saddle point for a > a0.

6. Prove that there exists a1 = a1(b) such that if a0 < a < a1, the fixed
point p+ is attracting.

The previous three exercises show that the saddle node bifurcation occurs
in the Hénon map at a = a0(b).

7. By plotting x+ and x− versus a, give a picture of the bifurcation diagram
for the fixed points of H.

8. Prove that

a. if a = a1(b), p+ has an eigenvalue −1;
b. if a > a1(b), p+ is a saddle-point. Discuss the behavior of the eigen-

values of DH(p+) as a varies in both cases b > 0 and b < 0.

9. Compute the periodic points of period two for H. Show that there is a
unique periodic orbit of period 2 if a > a1(b) and no such orbit if a ≤ a1.
Prove that this periodic orbit approaches p+ as a → a1. This, of course, is
the period-doubling bifurcation.

10. Prove via the following steps, that if a < a0, and b > 0, then |Hn(p)| →
∞ as n → ±∞ for all p ∈ R2. Conclude that H has no periodic points
whatsoever when a < a0.

a. Let M1 = {(x, y)|x ≤ −|y|}. Show that if (x0, y0) ∈ M1, then
(x1, y1) ∈ M1 and x1 < x0.

b. Let M2 = {(x, y)|x ≥ −|y| and y ≤ 0}. Prove that H(M1 ∪ M2) ⊂
interior (M1).

c. Let M3 = {(x, y)|x ≥ −|y| and y ≥ 0}. Prove that H−1(M2 ∪ M3) ⊂
interior (M3).

d. If (x0, y0) ∈ M3, prove that |y−1| > |y0| where we have written
H−1(x0, y0) = (x−1, y−1).

11. Construct a similar proof for the case a < a0 and b < 0.
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These two exercises thus prove that there are “no” dynamics for the
Hénon map before the saddle node bifurcation. This is similar to the situa-
tion encountered for the one-dimensional quadratic map.

12. Let R be the larger root of ρ2 − (|b| + 1)ρ − a = 0. Let S be the square
centered at the origin with vertices (±R,±R). By using the above partition,
prove that all periodic points of H lie in S if a > a0, by showing that if
(x0, y0) �∈ S then either xn → −∞ or |y−n| → ∞ as n → ∞.
13. Prove that the image of S under H is as depicted in Fig. 9.1. Prove
that there exists a2 = a2(b) such that the image of S cuts completely across
S. Compute a2 explicitly.

Fig. 9.1.

Note the great similarity between these figures and those for the horse-
shoe map of §2.3. In fact, the set of points whose orbits lie for all time in
S is homeomorphic to Σ2, as was the case for the horseshoe map. The next
few exercises outline a proof of this fact.

14. Consider the cones

Cu(λ) = {(ξ, η) | |ξ| ≥ λ|η|}
Cs(λ) = {(ξ, η) | |η| ≥ λ|ξ|}

where λ ≥ 1. Prove that, if |x| ≥ λ(1 + |b|)/2, then Cu(λ) is invariant under
DH(x, y). Similarly, if |y| ≥ λ(1+ |b|)/2, show that Cs(λ) is invariant under
DH−1(x, y).
15. Suppose (ξ0, η0) ∈ Cu(λ) and |x| ≥ λ(1+ |b|)/2. Prove that |ξ1| > λ|ξ0|
and |η−1| ≥ λ|η0|.
16. Prove that there exists a3 = a3(b) such that if a > a3, then λ in the
above exercises may be chosen larger than 2.
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Let D denote the square S with the two strips |x|, |y| ≤ λ(1 + |b|)/2
removed. Let Λ = {(x, y) ∈ D | Hn(x, y) ∈ D for all n ∈ Z}. Provided
a > a3(b), the above three exercises prove that Λ is a hyperbolic set.

We may now introduce symbolic dynamics in exactly the same manner
as we did for the horseshoe. The requirement that |x| > λ(1 + |b|)/2 divides
S into two vertical strips, which we denote by V1 and V2. Similarly, |y| >
λ(1+ |b|)/2 divides S into two horizontal strips, which we denote by H1 and
H2. We say that a subset V of S is a vertical strip if

a. V ⊂ V1 ∪ V2;
b. V = {(x, y)|v1(y) ≤ x ≤ v2(y)} where v1, v2 are vertical curves in S.

Horizontal strips are defined analogously. Let s = (. . . s−2s−1 · s0s1s2 . . .) ∈
Σ2. Define

Vs0s1...sk = {(x, y) ∈ D |Hi(x, y) ∈ Vsi for 0 ≤ i ≤ k}
Hs−1...s−k

= {(x, y) ∈ D |Hi(x, y) ∈ Hsi for − k ≤ i ≤ −1}.

17. Prove that, if a > a3(b), Vs0...sk
is a vertical strip and Hs−1...s−k

is a
horizontal strip.

18. Prove that
∞⋂

k=0
Vs0...sk = Vs

is a vertical curve and
∞⋂

k=−1
Hs−1...s−k = Hs

is a horizontal curve.

19. Prove that the map h: Σ2 → Λ given by h(. . . s−2s−1 · s0s1s2 . . .) =
Vs ∩ Hs is a homeomorphism.

20. Prove that h gives a topological conjugacy between H on Λ and σ on
Σ2.

Thus the Hénon map is the analogue of the quadratic map in dimension
two. For a fixed value of b, as the parameter a increases, the dynamics of
Ha,b become increasingly complex. For a small there are no periodic points
for Ha,b, whereas for a large, there are infinitely many, and, indeed, Ha,b

admits an invariant set on which Ha,b is topologically conjugate to the shift
automorphism.
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Remarks.
1. The transition from simple to complex dynamics in the Hénon map is,
to this day, not well understood, although this is a subject of considerable
importance in mathematical research.
2. Sarkovskii’s Theorem definitely does not hold in R2. In fact, when b = 1,
we will show below that period two is the last period to appear as a increases.

21. The area-preserving cases. When b = 1, the Hénon map has the special
property of preserving areas in the plane. That is, if S is a rectangle in R2

and H(S) is its image, prove that
∫∫

S
dx dy =

∫∫
H(S)

dx dy.

This result is also true when b = −1, where H preserves area (but reverses
orientation since det(DH) = −1). We will concentrate on the case b = 1 in
Exercises 22-34.
22. Compute the eigenvalues at the fixed points p± in case b = 1. Show that
the eigenvalues of p± are complex and of absolute value 1 if a0(1) < a < a1(1).
Evaluate a0 and a1 explicitly. The fixed point p± is thus not hyperbolic for
a0 < a < a1.
23. Prove that every periodic point for H has eigenvalues λ, λ−1 which
satisfy (when b = 1) either

a. λ ∈ R;
b. λ ∈ C and |λ| = 1, λ−1 = λ.

In case a, the periodic point is hyperbolic as usual. In case b, the periodic
point is called elliptic.

Let R be the linear map given by

x1 = y

y1 = x.

Note that R fixes the line ∆ given by y = x and satisfies R ◦ R = id. A map
with this property is called an involution.
24. Prove that, when b = 1, H ◦ R = R ◦ H−1. Conclude that H =
U ◦ R, where U is also an involution. Identify Fix(U). Maps with this
special property are called R-reversible. This symmetry is present in many
dynamical systems which arise in classical mechanics. Its advantage is that it
often simplifies the problem of finding certain periodic or homoclinic points.
25. Prove that, if q ∈ ∆ and Hk(q) ∈ ∆, then q is periodic of period 2k.
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26. Prove that, if q ∈ Fix(U) and Hk(q) ∈ Fix(U), then q is periodic of
period 2k.
27. Prove that, if q ∈ ∆ and Hk(q) ∈ Fix(U), then q is periodic of period
2k − 1.

Periodic points which arise as in the previous three exercises are called
symmetric periodic points.

28. Symbolic dynamics revisited. Using the symbolic dynamics introduced
above, prove that the action of R induces the map

R̂(. . . s−2s−1 · s0s1s2) = (. . . s2s1s0 · s−1s−2 . . .)

on sequences.
29. Prove that the shift map σ may be written as a composition of two
involutions, σ = Û ◦ R̂.
30. Identify all of the symmetric periodic sequences under σ.

31. Bifurcation theory for reversible maps. Recall that, for a0 < a < a1,
the eigenvalues at the fixed point p+ lie on the unit circle. Prove that these
eigenvalues traverse the unit circle exactly once as a increases from a0 to a1.
Conclude that there is a unique parameter value for which this eigenvalue is
a given nth root of unity (where n ≥ 3).
32. Let ζ be an nth root of unity with n ≥ 3 and suppose a∗ is the parameter
value for which the eigenvalues of p+ are ζ, ζ. Prove that there is a bifurcation
at a∗ in which at least one symmetric periodic orbit of period n separates
away from p+ as a passes through a∗. (Hint: watch the behavior of Hn(∆)
as a passes through a∗.)

Thus we see that periodic points for the Hénon map arise whenever the
eigenvalues pass through an nth root of unity. Actually, one may show that
a pair of symmetric periodic orbits arise at each such bifurcation point.

Remarks.

1. This shows that there are bifurcations at a dense set of parameter values
between a0 and a1.
2. Note that periodic points of all periods n ≥ 3 must arise as a increases
from a0 to a1. At a1 we have the first appearance of a period two point;
that is, period two is the last to appear. This is completely different from
the Sarkovskii ordering!
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33. Homoclinic Bifurcations. Let q ∈ ∆ and suppose that q ∈ W s(p).
Prove that q ∈ W u(p) as well, so that q is a homoclinic point. Such homo-
clinic points are called symmetric homoclinic points.
34. Prove that, if a > a0, then H admits a symmetric homoclinic point
to p−. That is, as soon as the first hyperbolic fixed point for H is born in
a saddle node bifurcation, it develops a homoclinic point. Prove that the
phase portrait of H is as depicted in Fig. 9.2.

Fig. 9.2.

The exercises above show that the character of area-preserving maps is
quite different from their dissipative (|b| < 1) counterparts. Area-preserving
maps form an important class of maps which often arise in applications in
mechanics. The structure of such a map near an elliptic fixed point is usually
quite intricate and is not yet completely understood. This is the setting for
the celebrated Moser Twist Theorem, which asserts that subject to certain
differentiability and eigenvalue conditions, there are infinitely many invariant
circles around an elliptic fixed point. On these circles, the map is simply
irrational rotation. Between these circles, however, the map may be quite
chaotic. The study of these maps near an elliptic point could fill another
volume!

Remarks. The following are two open problems.
1. When a = 1.4 and b = −0.3, numerical studies indicate that the Hénon
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map possesses a “strange attractor.” See Exercise 5.10. What is happening
here?
2. Construct the full bifurcation diagram for Ha,b (in the a, b -plane with
(x, y) ∈ R2).

FOR FURTHER READING:

There are a number of texts which can be used to augment and extend
the material in Chapter Two. In this text, we have avoided the use of
manifolds as the setting for dynamics, but most of the results in this chapter
go over easily to this more general case. Also, much of this material may be
extended to vector fields or flows without much difficulty. Basic texts which
incorporate both of these extensions include:

Robinson, C. Dynamical Systems. Boca Raton: CRC Press, 1995.

Hirsch, M. W., Smale, S., and Devaney, R. L. Differential Equations, Dy-
namical Systems, and Linear Algebra. Academic Press, New York, 2003.

Palis, J. and de Melo, W. Geometric Theory of Dynamical Systems. Springer-
Verlag, New York, 1982.

Alligood, K. T., Sauer, T., and Yorke, J. Chaos: An Introduction to Dynam-
ical Systems. New York: Springer-Verlag, 1994.

We have also avoided applications of the theory of dynamical systems in this
text. In recent years, it has become apparent that chaotic dynamics occur
in a great number of important physical systems. Two texts that analyze a
number of these applications are:

Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

Strogatz, S. Nonlinear Dynamics and Chaos. Perseus Press, 1994

Applications to systems of differential equations which arise in Classical Me-
chanics have provided a fruitful source of problems in Dynamical Systems.
There are a number of advanced texts in this field:

Abraham, R. and Marsden, J. Foundations of Mechanics. Second Edition.
Benjamin/Cummings, Reading, Mass., 1978.

Arnol’d, V.I. Mathematical Methods of Classical Mechanics. Springer-Verlag,
New York, 1974.
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Moser, J. Stable and Random Motions in Dynamical Systems. Princeton
University Press, Princeton, New Jersey, 1973.

This last text features an example of how the Smale Horseshoe map arises
in the Restricted Three Body Problem of Celestial Mechanics. For a proof
of the Stable and Unstable Manifold Theorem for hyperbolic sets, the reader
may consult:

Shub, M. Global Stability of Dynamical Systems. Springer-Verlag, New York,
1987.

The following book contains three survey papers on more advanced topics:
bifurcation theory by Guckenheimer, hyperbolic sets by Newhouse, and in-
tegrable systems by Moser.

Dynamical Systems. CIME Lectures, Bressanone, Italy. Birkhäuser, Boston,
1980.

The following book provides an introduction to the ergodic theory of dynam-
ical systems:

Manẽ, R. Ergodic Theory and Differentiable Dynamics. Springer-Verlag,
Berlin, 1987.

Finally, an extensive treatment of virtually all of the topics of the preceding
two chapters, plus much more may be found in

Katok, A. and Hasselblatt, B. Introduction to the Modern Theory of Dynam-
ical Systems Cambridge University Press, 1995.
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Chapter Three

Complex Analytic Dynamics

The rather specialized subject of the dynamics of complex analytic func-
tions has undergone a remarkable resurgence of interest in recent years. This
field, which flourished in the 1920’s under the guidance of mathematicians
such as Fatou and Julia, lay for the most part dormant until the late seven-
ties. Then, due mainly to the alluring computer graphics of Mandelbrot and
the equally enticing mathematical work of Douady, Hubbard, and Sullivan,
attention was once again drawn to the rich dynamical behavior of elementary
maps of the complex plane.

We will not attempt to survey the most recent work in this chapter.
Rather, we will attempt to show how the added assumption of analyticity
introduces a new wrinkle into a dynamical system. A complex analytic map
always decomposes the plane into two disjoint subsets, the stable set, on
which the dynamics are relatively tame, and the Julia set, on which the map
is chaotic. We will attempt to describe this chaotic behavior in detail and
to sample the types of stable behavior that can occur.
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To simplify the exposition, we will concentrate mainly on polynomial
maps of the complex plane. Most of the results are true for more general
classes of analytic maps, such as rational maps or entire functions. Later in
this chapter, we will briefly describe some additional phenomena that occur
for these types of maps.

By rights, this chapter should be placed between the chapters on one-
dimensional maps and higher dimensional maps. We will see that complex
analytic maps share many of the features of one-dimensional systems de-
spite the fact that they live in a higher dimensional setting. We choose to
insert this section later, however, since the study of analytic maps necessi-
tates additional mathematical techniques, namely complex analysis. We will
summarize the relevant results from this field in the next section.

§3.1. PRELIMINARIES FROM COMPLEX ANALYSIS

Although we will concentrate mainly on the dynamics of polynomial
maps in this chapter, several of the most important techniques that we will
use apply to more general complex analytic functions. We will summarize
some of the most important results in this section. For proofs and more
details, we refer the reader to any of the excellent introductions to the subject
of complex analysis such as the books of Conway or Ahlfors.

We denote the complex plane by C. A complex number is written in the
form z = x+ iy, where i =

√
−1. The real part of z, denoted by Re (z), is x,

while the imaginary part, Im (z), is y. We denote the modulus of z by |z|,
i.e.,

|z| =
√

x2 + y2.

Definition 1.1. F : C → C is analytic at z0 if

F ′(z0) = lim
z→z0

F (z) − F (z0)
z − z0

exists.

Definition 1.2. Let U ⊂ C be an open connected set. F : U → C is
analytic in U if it is analytic at each z0 ∈ U .
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Proposition 1.3. Let F (z) be analytic in a neighborhood of z0. Then there
is an r > 0 such that

F (z) =
∞∑

n=0
an(z − z0)n

for |z − z0| < r.

That is, every analytic function may be represented, at least locally, by
a power series. Of course, polynomials are a very special case, since the sum
above is finite and the convergence question is not present.

Many of the functions encountered in elementary mathematics are an-
alytic. Besides polynomials, all rational functions of the form P (z)/Q(z)
where P and Q are polynomials are analytic on their domains of definition.
Below we will show how to extend the definition of such a function to points
where Q(z) = 0. Another class of analytic maps is the class of entire tran-
scendental functions, i.e., those non-polynomial power series which converge
in the entire complex plane. Examples of entire functions include the com-
plex exponential, sine, and cosine functions. For later use, we recall the
definitions of these complex maps here.

Definition 1.4. Let z = x + iy

exp(z) = exeiy = ex(cos y + i sin y) =
∞∑

n=0

zn

n!

sin(z) =
1
2i

(eiz − e−iz) =
∞∑

n=0
(−1)n

z2n+1

(2n + 1)!

cos(z) =
1
2
(eiz + e−iz) =

∞∑
n=0

(−1)n
z2n

(2n)!
.

We will have occasion to use open sets which are connected and have no
“holes.” Such regions are called simply connected . Rather than get into a
technical description of simply connected sets, we will adopt the following
special definition of simple connectivity. In truth, via the extremely impor-
tant Riemann Mapping Theorem, our definition is completely general (at
least for regions in the plane). We emphasize that this is not the standard
definition of simple connectivity, but it is sufficient for our purposes.

Definition 1.5. An open subset U of C is simply connected if either U = C
or else there is a one-to-one, onto, analytic map F : D → U where D is the
open unit disk given by {z ∈ C| |z| < 1}.
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Example 1.6. Any half-plane of the form Re (z) > a or Im (z) > a is simply
connected. Indeed, the map

F (z) =
z + 1
1 − z

maps D onto the right half plane Re (z) > 0.

The following proposition summarizes some of the unique properties of
analytic maps.

Proposition 1.7. Let U ⊂ C be open and suppose F : U → C is analytic.
Then

1. F (n) : U → C is analytic, where F (n) is the nth derivative of F .
2. F (U) is open in C, provided F is non-constant.
3. (The Maximum Principle) If U is bounded, then |F (z)| assumes its

maximum value on the boundary of U .

From the Inverse Function Theorem, we have the usual result about the
existence of a local (analytic) inverse.

Proposition 1.8. Suppose F is analytic and F ′(z0) �= 0. Then there is
an ε > 0 and a neighborhood U of z0 such that F maps U onto D = {z ∈
C| |z − F (z0)| < ε} in a one-to-one fashion. Moreover, the inverse map
F−1 : D → U is analytic.

The assumption of analyticity also allows us to say quite a bit about the
behavior of an analytic function near a critical point, i.e., a point z0 where
F ′(z0) = 0.

Proposition 1.9. Suppose F is analytic and F (j)(z0) = 0 for 1 ≤ j < n,
but F (n)(z0) �= 0. Then there exists ε > 0 and a neighborhood U of z0 such
that, if 0 < |w−F (z0)| < ε, then there are exactly n solutions to the equation
F (z) = w in U .

The content of this proposition is best visualized geometrically. We de-
note the disk of radius ε about F (z0) by Bε(F (z0)). Let γ be a ray connecting
F (z0) to the boundary of Bε. Then the various preimages of γ subdivide U
into n sectors. Then F maps the interior of each sector homeomorphically
onto Bε − γ. See Fig. 1.1. For example, consider F (z) = zn for n ≥ 2.
There is a unique solution to the equation F (z) = 0, while there are exactly
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Fig. 1.1.

n solutions to F (z) = w for all w �= 0. These solutions are, of course, the
nth roots of w.

The following result is known as the lemma of Schwarz, but its impor-
tance in the sequel warrants calling it a Theorem.

Theorem 1.10. Suppose F is analytic in the disk |z| < 1 and satisfies
1. |F (z)| ≤ 1
2. F (0) = 0.

Then |F (z)| ≤ |z| and |F ′(0)| ≤ 1. Equality holds only if F (z) = eiθz.

For a proof, we refer to Ahlfors’ text. The Schwarz lemma shows that
analytic maps on simply connected regions are very special. The following
is a more useful version for our purposes of this result.

Corollary 1.11. Suppose U is a simply connected open subset of C not
equal to C itself and suppose F : U → U is analytic. If F has a fixed point
z0 in U , then either

1. |F ′(z0)| < 1 and Fn(z) → z0 for all z ∈ U , or
2. F ′(z0) = eiθ and F is analytically conjugate to rotation of the unit

disk by eiθ.

Remark. The case U = C must be excluded since the map F (z) = az
with |a| > 1 is an obvious counterexample. It is one of the remarkable
features of complex analytic maps that this cannot happen on any other
simply connected open subset of C.
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One of the main reasons that we will concentrate on polynomials is the
availability of the following theorem known as the Fundamental Theorem of
Algebra.

Theorem 1.12. Let P (z) be a polynomial of degree n. If n > 0, then P (z)
may be written in the form P (z) = a(z − α1) · . . . · (z − αn) where the αi are
not necessarily distinct.

Complex analytic maps often treat ∞ in a fairly straightforward manner.
For example, consider Q(z) = z2. If |z| < 1, then Qn(z) → 0 under iteration,
whereas if |z| > 1, then Qn(z) → ∞. Hence, for this map, both 0 and
∞ may be regarded as attracting “fixed points.” Of course, we must define
Q(∞) = ∞ in order for this to make sense. But this turns out to be perfectly
legitimate. Consider the map H(z) = 1/z. H takes 0 to ∞ and vice-versa.
Note that H is one-to-one and analytic, and that H ◦ Q ◦ H−1 = Q, i.e.,
H conjugates Q to itself! Note, however, that the local behavior of Q near
∞ is carried to that of Q near 0. That is, the behavior near ∞ for this
map is the same as that near 0. That means that there is nothing special
whatsoever about ∞ and we might as well allow ∞ as just another point
in the complex plane, or rather, the extended complex plane. All of this
may be made precise by introducing the Riemann sphere. This is the sphere
obtained as follows. We will identify each point in C ∪ {∞} with a unique
point on a sphere. This is accomplished as follows.

Take the sphere and set its south pole at the origin in C. From the north
pole, draw a straight line to the point z in C. This straight line pierces the
sphere in exactly one point which we denote by S(z). Note that S then
gives a homeomorphism from C onto the sphere minus the north pole. To
complete the picture, we set S(∞) = north pole. When viewed this way, the
“space” C∪{∞} is called the Riemann sphere and denoted by C. Intuitively,
the Riemann sphere is constructed by wrapping the plane onto the sphere
minus the north pole and then gluing it all together by adding in the point
“at infinity.” See Fig. 1.2.

How do we describe analytic maps on the Riemann sphere? We do pre-
cisely what we did for the map Q(z) = z2; we simply conjugate with a map
which “moves” ∞ elsewhere. More precisely, let F : C → C and suppose
F (∞) = z0. For simplicity, we assume that z0 �= 0. Then F is said to be
analytic at ∞ if H ◦ F ◦ H−1 is analytic at 0, where H(z) = 1/z as above.
(If F (∞) = 0, we replace H(z) by the map z → 1/z − a where a �= 0, ∞.)

Example 1.13. Let P (z) = anzn + . . . + a0 be a polynomial with n ≥ 2.
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Fig. 1.2. The Riemann Sphere.

Then P (∞) = ∞ and P is analytic at ∞. Indeed, we have

H ◦ P ◦ H−1(z) =
1

P (1
z )

=
zn

an + an−1z + . . . + a0zn
.

This rational function vanishes when z = 0 as does its derivative. Conse-
quently, P ′(∞) = 0 as well.

Example 1.14. Let

L(z) =
az + b

cz + d

where the coefficients a, b, c, d are complex and satisfy ad−bc �= 0. L is called
a linear fractional transformation. If c �= 0, L(∞) = a/c �= ∞. If a �= 0,
conjugation by 1/z yields the map

F (z) =
c + dz

a + bz

and F ′(0) = (ad − bc)/a2 �= 0. Hence ∞ is a regular point for L.

More generally, if R(z) is any rational function of the form P (z)/Q(z)
where P and Q are polynomials, then R induces an analytic map on the
entire Riemann sphere. The point at ∞ may either be fixed, as in the case
of a polynomial, or periodic, as in the case of R(z) = 1/zn. In fact, ∞ may
behave as any other point under iteration of an analytic map. We remark
that points which are mapped to ∞ by a rational map are called poles.
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Exercises

The following exercises deal with rational maps of the form

T (z) =
αz + β

γz + δ

where α, β, γ, δ ∈ C. If αδ −βγ �= 0, the map is called a Möbius transforma-
tion. Throughout, we assume αδ − βγ �= 0.

1. Prove that a Möbius transformation induces an analytic diffeomorphism
of the Riemann sphere.

2. Show that the inverse of T exists and is also a Möbius transformation.

3. Calculate T (∞) and show that T (−δ/γ) = ∞.

4. Prove that any Möbius transformation may be written as a composition
of translations (maps of the form z → z + a), inversions (z → 1/z), and
homothetic transformations (z → bz). The homothetic transformation may
be a contraction (|b| < 1), a dilation (|b| > 1), or a rotation (|b| = 1).

5. Prove that a Möbius transformation maps straight lines in C to either
circles or straight lines. Similarly, prove that circles are mapped to either
circles or straight lines. Since straight lines in C correspond to actual circles
in the Riemann sphere, we are justified in calling them (generalized) circles
as well. Hence this exercise may be succinctly stated: show that a Möbius
transformation maps circles to circles in C.

6. Prove that, if (α − δ)2 + 4βγ = 0, then T has a unique fixed point at
z = α − δ. In this case, T is called a parabolic transformation.

7. Show that a parabolic transformation is analytically conjugate to a
translation of the form z → z + µ.

8. Show that, if T has two fixed points, then T is analytically conjugate
(via a Möbius transformation) to a unique linear map of the form z → µz.
If |µ| = 1, T is called elliptic; if |µ| �= 1, T is called hyperbolic.

9. Identify each of the following Möbius transformations as parabolic, hy-
perbolic, or elliptic

a. T (z) = 1/z

b. T (z) = 2z + 1
c. T (z) = (z + 1)/(z − 1)
d. T (z) = z/(2 − z)
e. T (z) = iz + 1 − i.
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10. Let C1 denote the set of lines through the origin and let C2 denote the
set of concentric circles about 0. Note that z → µz preserves the elements of
C1 and C2. Under the conjugacy described in Exercise 8, both C1 and C2 go
over to “circles” in the Riemann sphere. The images of the circles in C1 and
C2 are called the Steiner circles for T . Sketch these circles for the following
Möbius transformations

a. T (z) = 1/z

b. T (z) = 2z + 1
c. T (z) = z/(2 − z).

11. Prove that the Schwarzian derivative of a Möbius transformation is
identically zero.

§3.2 QUADRATIC MAPS REVISITED

In this section, we return to an old friend, the family of quadratic maps.
This time these maps will be viewed as dynamical systems in the complex
plane rather than on the real line. The resulting dynamics will be consider-
ably more complicated, at least for certain parameter values. We choose to
study the quadratic maps in the form Qc(z) = z2 + c where c is a complex
parameter. The reason for this is, for these maps, the critical point is located
conveniently at 0. In complex dynamics, the orbit of the critical point plays
a dominant role. We remark that for any complex number λ �= 0, there is a
c = c(λ) for which the quadratic map z → λz(1−z) studied in the first chap-
ter is analytically conjugate to z → z2 + c via a map of the form z → az + b
(see Exercise 7.1 in Chapter One).

We first consider the “simplest” map in this family, Q0(z) = z2. On the
real line, this map has only two fixed points, at 0 and 1, and all other points
tend to one of these points or to ∞ under iteration. In the complex plane,
the dynamics are more complicated, but not much more so.

Observe that, if |z| < 1, then Qn
0(z) → 0, while if |z| > 1, then Qn

0 (z) →
∞. Thus the dynamics of Q0 are quite tame off the unit circle. On S1,
however, the map is chaotic. Indeed, Q0 reduces to another old friend on
S1, the map θ → 2θ. In §1.3 we proved that hyperbolic periodic points for
this map were dense in S1 and later, in §1.8, we showed that this map was
actually chaotic. We recall that the three ingredients of chaotic dynamics
were
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1. sensitive dependence on initial conditions
2. topological transitivity
3. dense periodic points.

The fact that θ → 2θ expanded arclengths by a factor of two enabled us to
prove 1-3 for this map. The unit circle in this example is the Julia set for Q0.
Most of our efforts in this chapter will be aimed at describing the structure
of and the dynamics on this set for other complex analytic maps.

Definition 2.1. Let P : C → C be a polynomial. The Julia set of P ,
denoted by J(P ), is the closure of the set of repelling periodic points of P .

As in previous chapters, a periodic point z0 = P n(z0) is repelling if
|(Pn)′(z0)| > 1. For a complex dynamical system, we remark that this
derivative is a complex number and hence the absolute value denotes the
modulus of (Pn)′(z0).

Let us note several other properties of J(Q0). First, J(Q0) is completely
invariant . By this we mean J(Q0) contains all forward images as well as
preimages of points in J . As a consequence, the complement of J(Q0) is also
completely invariant. We call this set the stable set and emphasize again
that the dynamics on this set are quite tame.

Definition 2.2. The stable set of P , denoted by S(P ), is the complement
of the Julia set.

A more interesting property of the Julia set of Q0 is the fact that neigh-
borhoods of any point in J are smeared over virtually the entire plane by
iterates of Q0. More precisely, we have

Proposition 2.3. Let |z0| = 1 and suppose U is any neighborhood of z0.
Then for each z ∈ C, z �= 0, there is an m such that z ∈ Qm

0 (U).

Proof. Let z0 = e2πiθ0 . There is an ε > 0 such that the portion W
of the wedge determined by |θ − θ0| < ε and |r − 1| < ε lies inside U .
Now Q0 expands W in both the θ- and r-directions. In particular, there
is an n such that Qn

0 expands the arc |θ − θ0| < ε, r = 1 sufficiently
so that its image covers S1. It follows that Qn

0(W ) contains the annu-
lus 1 − ε < r < 1 + ε. From this, it follows that Qn+k

0 (W ) contains the
annulus (1 − ε)k < r < (1 + ε)k. The result then follows immediately.

q.e.d.
Another way of viewing this proposition is that every point (except 0 )

has a succession of preimages which converges to the Julia set. Thus, the
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Julia set is a chaotic repeller for Q0. Not only do the maps Qn
0 spread points

apart on the Julia set but also these maps spread small neighborhoods of
points in the Julia set over the entire plane ( 0 is the only point which is
missed). This property of the family of maps {Qn

0} will become crucial when
we discuss normal families in the next section.

We should remark that, in general, J(P ) is not a smooth curve as in
the case of Q0. Usually, J(P ) is much more complicated geometrically. The
following example, again an old friend, shows that J may be a Cantor set.

Consider Qc(z) = z2 + c. If c is real and c < −2, then Qc is easily seen
to be topologically conjugate to a map of the form z → λz(1 − z) where
λ > 4. Recall that, on R at least, these maps feature most points tending
to ∞ under iteration with the exception of a Cantor set on which the map
is equivalent to a shift map. The same is true in the complex plane.

Proposition 2.4. Let |c| > 2. Suppose |z| ≥ |c|. Then Qn
c (z) → ∞ as

n → ∞.

Proof. Let |z| = r ≥ |c| > 2. Qc maps the circle of radius r centered at 0 to
a circle of radius r2 centered at c. Since r2 > 2r, it follows that this image
circle lies in the exterior of the circle of radius r. Consequently, |Qc(z)| > |z|
for all z with |z| ≥ |c| and we have |Qn

c (z)| → ∞.
q.e.d.

As there are no periodic points for Qc in the exterior of |z| = |c|, it
follows that this entire region lies in S(Qc). Moreover, any point which is
eventually mapped into this region must also lie in S(Qc). Let us denote by
Λ the set of points whose entire forward orbits lie within the circle |z| = |c|.
The following proposition should come as no surprise.

Proposition 2.5. If |c| is sufficiently large, Λ is a Qc-invariant Cantor set
on which Qc is topologically conjugate to the shift on two symbols. All points
in C − Λ tend to ∞ under iteration of Qc.

Proof. This proof is exactly analogous to that of the real quadratic maps,
except that the nested sequence of intervals which defines the Cantor set is
replaced by a nested sequence of disks, much as in the case of the solenoid.

Let γ be the preimage of the circle |z| = |c|. We claim that γ is a figure
eight curve as depicted in Fig. 2.1. To see this, we simply observe that 0
is the only preimage of c, whereas all other points on |z| = |c| have two
preimages. Note that γ is contained in the interior of the disk |z| ≤ |c|.
Also note that points between γ and the circle |z| = |c| are mapped into the
exterior of |z| = |c|, and hence these points lie in the stable set.
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Fig. 2.1.

Now choose r < |c| so that γ is contained in the interior of the disk
D given by |z| ≤ r. The preimage of the disk D consists of two simply
connected sets, one in each lobe of γ. Each of these “disks” is mapped
diffeomorphically onto |z| ≤ r. Clearly, Λ = ∩∞

n=1Q
−n
c (D). As in the previous

examples, it is easy to check that Q−n
c (D) consists of 2n disks and that

Q−n
c (D) ⊂ Q−n+1

c (D). See Fig. 2.2. The intersection of any nested sequence
of these disks is a unique point. To prove this, we need to make one additional
assumption at this point (analogous to the derivative condition we used in
§1.5).

Let B denote the disk of radius 1/2 centered at the origin. Qc(B) is
the disk of radius 1/4 centered at c. Let us assume that Qc(B) ∩ γ =
φ. Note that if |Q′

c(z)| ≤ 1, then z ∈ B. Hence our assumption im-
plies that any point with derivative less than one is mapped out of γ.
Hence |Q′

c(z)| > 1 for all z ∈ Λ and it follows that Λ is a Cantor set.
q.e.d.

Remarks.

1. Clearly, repelling periodic points are dense in Λ and so Λ is precisely the
Julia set of Qc.
2. If z0 ∈ Λ, any small neighborhood N of z0 must contain a disk which
is a preimage of D. Hence Qc eventually expands N under iteration so that
any point in C lies in some Qn

c (N).
3. We remark that our conditions on c which guarantee that J(Qc) is a
Cantor set may be relaxed somewhat. It can be proved that if Qn

c (c) → ∞,
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Fig. 2.2.

then J(Qc) is a Cantor set as above. We will discuss this further in §3.8. See
Exercise 1.

Exercises

1. Prove that, if |z| ≥ |c| and |z| > 2, then |Qc(z)| > |z|. Conclude that
Qn

c (z) → ∞ for any such z and c.
2. Prove that, if |c| > 2, then Qn

c (0) → ∞.

§3.3 NORMAL FAMILIES AND EXCEPTIONAL POINTS

In this section, we consider several special properties enjoyed by families
of complex analytic maps. It is these properties which give the dynamics of
these maps a much richer structure than those previously encountered.

Let {Fn} be a family of complex analytic functions defined on an open
set U . Most often, for our purposes, Fn will be the nth iterate of a given
map F , but for the moment we will adopt a more general approach.

Definition 3.1. The family {Fn} is a normal family on U if every sequence
of the Fn’s has a subsequence which either

1. converges uniformly on compact subsets of U , or
2. converges uniformly to ∞ on U .
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Example 3.2. Let F (z) = az with |a| < 1 and set Fn(z) = Fn(z), i.e.,
the nth iterate of F . Then {Fn} forms a normal family of functions on any
domain in C since Fn converges uniformly to the constant function 0 on
compact subsets.

Example 3.3. If F (z) = az with |a| > 1, then the above family is normal
on any domain which does not include 0, but fails to be normal if the domain
includes 0. Indeed, in any neighborhood of 0, there is a point z for which
|Fn(z)| is arbitrarily large for some n. In particular, we note that any such
neighborhood U satisfies

∞⋃
n=1

Fn(U) = C.

The previous examples show that the Julia sets of maps of the form
F (z) = az, or more generally, F (z) = az + b are quite simple. Therefore, we
will exclude these maps from consideration in the sequel. That is, we will
consider only polynomials of degree ≥ 2 from now on.

Definition 3.4. The family {Fn} is not normal at z0 if the family fails to
be a normal family in every neighborhood of z0.

The following proposition gives one of the most important properties of
sequences of analytic functions.

Proposition 3.5. Suppose Fn is a sequence of analytic functions which
converges uniformly on a domain U to a map F . Then F is analytic in U
and, moreover,

lim
n→∞ F (k)

n (z) = F (k)(z).

For a proof, we refer to Conway’s text. This proposition gives a useful
criterion for a family of analytic functions to fail to be normal at a given
point.

Proposition 3.6. Let F be analytic and suppose that z0 is a repelling
periodic point for F . Then the family of iterates of F is not normal at z0.

Proof. We prove this for fixed points. The proof for periodic points is only
slightly more complicated. See Exercise 3.1. Assume that {Fn} is normal
on a neighborhood U of z0. Since F n(z0) = z0 for all n, it follows that Fn(z)
does not converge to ∞ on U . Thus some sequence of the {F n} has a sub-
sequence {Fni} which converges uniformly to G on U . Hence |(Fni)′(z0)| →
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|G′(z0)|. But |(Fni)′(z0)| → ∞. This contradiction establishes the result.
q.e.d.

Corollary 3.7. Let F be analytic. The family of iterates {Fn} fails to be a
normal family at any point in J(F ).

One of the most important consequences of the failure to be a normal
family at a given point is that the family of functions must then assume
virtually every value in any neighborhood of the point. This result is a
variant of a theorem known as Montel’s Theorem.

Theorem 3.8. Suppose {Fn} is a family of analytic functions defined on a
domain U . Suppose there exist a, b ∈ C, a �= b, such that Fn(z) �= a or b for
any n and any z ∈ U . Then {Fn} is a normal family in U .

For our purposes, the following corollary will be most important.

Corollary 3.9. Let F be an analytic map. Let z0 ∈ J(F ) and let U be a
neighborhood of z0. Then

∞⋃
n=1

Fn(U)

omits at most one point in C.

Proof. If F n(U) omitted two points, then {Fn} would be a normal family in
U .

q.e.d.
Thus, the worst possible behavior of the family of iterates of F in a

neighborhood of a point in the Julia set is that it omits one value in C. This
can happen, as the example F (z) = z2 shows. The Julia set for this map is
the unit circle and, if U is an open set which meets S1 but does not meet 0,
then ∞⋃

n=1
F n(U) = C − {0}.

See Example 2.1. Such points are called exceptional points, and, as their
name implies, they rarely occur. Indeed, we may list all possible polynomials
which have exceptional points.

Theorem 3.10. Let P be a polynomial. Suppose there is a point z0 ∈ J(P )
and a neighborhood U of z0 such that

∞⋃
n=0

P n(U) = C − {a}.
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Then P (z) = a + λ(z − a)k for some λ ∈ C and some integer k.

Proof. Suppose P (b) = a. Then b is an exceptional point for P , for there is
no z in U which maps to b and then to a. But then Corollary 3.9 implies
that b = a. Hence a is fixed for P and, moreover, a is its only preimage.

Thus for some k we may write

P (z) − a

(z − a)k
= G(z)

where G is a polynomial and G(z) �= 0 for any z. Otherwise, we would have
an additional preimage of a. It follows that G(z) reduces to a constant by
the Fundamental Theorem of Algebra.

q.e.d.
These polynomials with an exceptional point at a are in fact topologically

conjugate to the simple map z → zk.

Proposition 3.11. Suppose P is a polynomial of degree n ≥ 2 which has
an exceptional point at a. Then P is topologically conjugate to z → zn.

Proof. Let Q(z) = zn. Theorem 3.10 shows that

P (z) = a + λ(z − a)n

for some λ �= 0. Choose any (n − 1)st root µ of λ, and define H(z) =
µ(z − a). Then a straightforward computation shows that Q ◦ H = H ◦ P .

q.e.d.
It follows that the Julia set of a polynomial with an exceptional value is a

circle. This turns out to be a rather special case. Since we may assume that
the dynamics of such a map are completely understood, we will henceforth
exclude such maps from consideration and study only those polynomials
without exceptional points.

Exercises
1. Prove that the family {F n} is not normal at any repelling periodic point
for F .
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§3.4 PERIODIC POINTS

There are basically three types of periodic points which may occur for
a complex analytic map, attracting, repelling, and indifferent or neutral pe-
riodic points. As in previous chapters, a fixed point z0 for P is attracting
(resp. repelling, resp. indifferent) if |P ′(z0)| < 1 (resp. |P ′(z0)| > 1, resp.
|P ′(z0)| = 1). Indifferent periodic points may be quite different from their
one-dimensional counterparts, as the rotation map z → eiθz shows. Hence
we will concentrate mainly on attracting and repelling periodic points in this
section, leaving the difficult neutral case until later.

We may distinguish two distinct types of attracting fixed point: the
super-attracting case where F ′(z0) = 0 and the attracting case where 0 <
|F ′(z0)| < 1. Analytically, these two cases are quite distinct although they
are similar dynamically. We will concentrate on the attracting case for the
moment.

Let us first describe the local dynamics near such a fixed point. As we
have seen for one-dimensional maps, using a fundamental domain argument,
we can set up a topological conjugacy locally between the map itself and
the linear map determined by the derivative at the fixed point. For complex
analytic maps, we can do much better: the conjugacy can actually be chosen
to be complex analytic. Hence we say that a complex analytic map may be
linearized near an attracting fixed point. This theorem has a long history,
going back to Koenigs in the nineteenth century. The proof we present here
is due to Siegel and Moser. We will provide all of the technical details, since
they illustrate best what goes wrong in the case of an indifferent periodic
point. We remark that it is of no real benefit to assume that the map is
a polynomial for local questions like these; hence we will work with a more
general analytic function.

Theorem 4.1. Let P (z) be an analytic function satisfying P (0) = 0 and
P ′(0) = λ with 0 < |λ| < 1. Then there is a neighborhood U of 0 and an
analytic map H : U → C such that

P ◦ H(z) = H ◦ L(z)

where L(z) = λz.
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Remark. The functional equation P ◦ H = H ◦ L is called the Schröder
functional equation.

Proof. We may write P as a power series in the form

P (z) = λz +
∞∑

�=2
a�z

�

where this series converges in some neighborhood of 0. We must therefore
find an analytic function H(z) that solves the functional equation P ◦ H =
H ◦ L. Such an analytic function must be represented as a power series and
so we may write

H(z) =
∞∑

�=0
c�z

�.

We will first determine what the coefficients c� of this power series must
be. This is a formal solution of the functional equation. Then we must show
that the series thus defined actually converges in some neighborhood of 0.

Determining the formal solution is the easy part. Since both P and L fix
0, so too must H. This means that c0 = 0. Next, comparing the first order
terms of P (H(z)) and H(λz), we see that c1 may be chosen arbitrarily (but
non-zero). We thus set c1 = 1, so that

H(z) = z +
∞∑

�=2
c�z

�.

We now proceed to determine the remaining c� recursively. The func-
tional equation may be written

λH(z) +
∞∑

�=2
a�(H(z))� = λz +

∞∑
�=2

c�λ
�z�.

Therefore we have

∞∑
�=2

(λ� − λ)c�z
� =

∞∑
�=2

a�(H(z))�. (∗)

Suppose that c2, . . . , ck−1 are known. Then the kth order terms on the right
hand side of this equation involve only c2, . . . , ck−1 since that summation
begins with terms of order two. In particular, the coefficient of zk on the
right is a polynomial in a2, . . . , ak as well as c2, . . . , ck−1 which has positive
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integer coefficients. We denote this term by Kk(a2, . . . , ak, c2, . . . , ck−1) and
emphasize that, as long as c2, . . . , ck−1 have been determined, Kk is known.

Then, comparing coefficients, we have

ck =
Kk(a2, . . . , ak, c2, . . . , ck−1)

λk − λ
. (∗∗)

Thus, ck is determined by the previous coefficients, provided λk �= λ, and we
have our formal solution.

Before proving that this solution converges, we observe that the expres-
sion for ck shows why this procedure breaks down when λ = 0 or λ = (k−1)st

root of unity. In either case, the expression for ck is undefined.
To prove that the power series

H(z) =
∞∑

�=2
c�z

�

converges, we need several lemmas.

Lemma 4.2. Let P (z) = z +
∑∞

�=2 a�z
�. Then P (z) is linearly conjugate to

a map R(z) = z +
∑∞

�=2 b�z
� where |b�| < 1 for each 	.

Proof. Since the series
∑∞

�=2 a�z
� converges in a neighborhood of 0, there is

an A > 0 for which |a�+1| < A� for each 	 ≥ 1. Let

R(z) = z +
∞∑

�=2
b�z

�

where b� = a�/A
�−1. Clearly, |b�| < 1 for each 	. Let h(z) = Az. Then one

computes immediately that h ◦ P (z) = R ◦ h(z).
q.e.d.

Lemma 4.3. Suppose 0 < |λ| < 1. There exists c > 0 such that |λk −λ| > c
for all k > 1.

Proof. Since 0 < |λ| < 1, it follows that |λk| ≤ |λ2| < |λ| for all k ≥ 2. Hence
|λk − λ| ≥ |λ| − |λ|2 > 0.

q.e.d.
Now observe that the power series in w given by

z = w − 1
c

∞∑
�=2

w�
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converges for |w| < 1 and for any c > 0. Indeed, we have

z = z(w) = w − 1
c

( 1
1 − w

− 1 − w
)

for |w| < 1. Now z(0) = 0 and z′(0) = 1. Hence it follows that the analytic
function z(w) has an inverse which is defined and analytic in some neighbor-
hood of 0. Since w(0) = 0 and w′(0) = 1, it follows that we may write the
inverse map in the form

w = w(z) = z +
∞∑

�=2
α�z

�,

where we know that the series

∞∑
�=2

α�z
�

converges. We will show that this series dominates the formal power series
developed for H, provided c is chosen small enough.

Lemma 4.4. Choose c as in Lemma 4.3. Then, for each k ≥ 2, we have

0 ≤ |ck| ≤ αk.

Proof. Observe that the power series for w = w(z) is a solution of the
functional equation

cw(z) − cz =
∞∑

�=2
(w(z))�.

Let us solve this equation exactly as we solved the Schröder functional equa-
tion. In terms of the αk, this equation reads

∞∑
k=2

cαkz
k =

∞∑
�=2

(w(z))�.

Now compare this equation to equation (*). These equations assume pre-
cisely the same form except that λ� − λ is replaced by c and a� by 1. Hence
the solution is determined in precisely the same manner as above and we
find that

αk =
Kk(1, . . . , 1, α2, . . . , αk−1)

c
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where the polynomial Kk is given by (**). Now Kk has positive integer
coefficients so that, by induction, each αk > 0. Also, since |ak| < 1, we have

|ck| ≤ |Kk(a2, . . . , ak, c2, . . . , ck−1)|
c

≤ 1
c
Kk(1, . . . , 1, |c2|, . . . , |ck−1|)

≤ 1
c
Kk(1, . . . , 1, α2, . . . , ak−1)

= αk.

q.e.d.

Remarks.
1. We emphasize that this result has been proved for analytic maps defined
locally about an attracting fixed point, not just for polynomials. Indeed, the
proof for polynomials is no simpler, as the conjugacy H in general is not a
polynomial.
2. The same proof works even if |λ| > 1 by considering the inverse map.
Hence repelling periodic points may also be linearized.
3. One might be tempted to assume that the Schröder functional equation
has a convergent solution if |λ| = 1 but λq �= 1 for any integer q. After all,
it then follows that the term λk − λ is non-zero for all k, so that we can
determine all of the ck’s. However, the question of convergence of this series
is most delicate, since |λk −λ| may be arbitrarily small (which forces the |ck|
to be large – see (**)). This is the famous problem of small denominators to
which we will return later.
4. A similar result holds in the superattracting case. Here P is locally
analytically conjugate to a map of the form z → zk. The exponent k is
determined by the first nonvanishing derivative of P at 0. We omit the
details.

We now turn our attention to more global behavior of an analytic map
near an attracting periodic point. Let z0 be such a point of period n. By the
previous results, there is a neighborhood U of z0 in which F jn(z) → z0 for all
z ∈ U . Consequently, the orbit of any point in U converges to the periodic
orbit. We call the set of all points which approach a given attracting periodic
orbit the basin of attraction of the orbit. Clearly, the basin of attraction is
an open set. We call the component of this set which contains the point z0
(and hence, the neighborhood U ) the immediate attracting basin. Unlike the
map Q0(z) = z2 for which the immediate attracting basin of 0 is actually the
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entire basin of attraction, it is very often the case that the basin of attraction
consists of infinitely many distinct components, all of which are eventually
mapped into one of the immediate attracting basins.

Remarks.
1. Let C be any component of the basin of attraction of an attracting
periodic point for F . Then the family of iterates of F is normal in C (see
Exercise 4.1). Hence C ∩ J(F ) = φ.
2. If z0 is a finite attracting orbit (i.e., z0 �= ∞), then any component of its
basin of attraction is simply connected. This fact is an easy consequence of
the Maximum Principle (see Exercise 4.2).
3. For a polynomial, ∞ may be viewed as an attracting “fixed point.”
However, the basin of attraction of ∞ is not necessarily simply connected.
See Proposition 2.5.

One of the distinguishing features of one-dimensional maps with nega-
tive Schwarzian derivative was the fact that every attracting periodic orbit
attracted at least one critical orbit. This greatly simplified the study of these
maps, for it put a bound on the number of attracting orbits. The same result
is true for complex analytic maps, but the proof is quite different. Before
proving this, we introduce a class of analytic homeomorphisms of the open
unit disk D.

Proposition 4.5. Let |a| < 1. Define

Ta(z) =
z − a

1 − az
.

Then Ta is analytic for |z| < |a|−1. Moreover, T−1
a = T−a for |z| < 1 and

Ta : D → D.

Proof. The proof is a straightforward computation and is therefore left as
an exercise.

Theorem 4.6. Let P be a polynomial and suppose that z0 is an attracting
periodic point for P . Then there is a critical value which lies in the basin of
attraction of z0.

Proof. Again, for simplicity, we will verify this only for an attracting fixed
point, say z0. By our previous results, there is a neighborhood U of z0 and
an analytic homeomorphism H: U → D which linearizes P . Let V be an
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open set containing U and such that P : V → U is onto. We claim that either
P has a critical point in V or else P has an analytic inverse P−1: U → V .

To prove this, let us assume that P does not have an analytic inverse on
U . Since P is analytic and surjective on V , it follows that P must not be
one-to-one. Therefore, there exist z1, z2 ∈ V such that P (z1) = P (z2) = q.
Suppose H(q) = a and let Ta: D → D be as given in the previous proposition.

Consider the circles Cr of radius r < 1 centered at 0 in D. T−1
a pulls this

family of circles back to a nested sequence of simple closed curves surrounding
a. Since P : V → U is analytic and P ′(zi) �= 0 for each i, it follows that, for r
small, P−1(H−1 ◦ T−1

a (Cr)) is a pair of families of nested circles, one family
about z1 and the other about z2. Here P−1 denotes the inverse image, not
the inverse map. Now, as r increases, there is a smallest r∗ for which these
two families first intersect. Let p be a point common to both simple closed
curves of the form P−1(H−1◦T−1

a (Cr∗)). Then p is easily seen to be a critical
point for P .

Thus, we may continue to define P−1 on successively larger domains
of attraction of z0 until we either meet a critical point or else exhaust the
immediate attractive basin by constructing P−k:U → C for all positive k.
Note that, for any k, P−k(U) cannot cover all of C; indeed, P−k(U) omits
the basin of attraction of ∞, which contains {z||z| > R} for some sufficiently
large R (see Exercise 4.4). However, the family of maps P −k is not normal
on U , as z0 is a repelling fixed point for each. So by Montel’s Theorem,
we must have that ∪∞

k=0P
−k(U) covers C minus at most one point. This

contradiction establishes the result.
q.e.d.

Remarks.

1. The only place where we used the fact that P was a polynomial in this
argument was to show that the basin of attraction of z0 omitted at least two
points, thereby allowing us to use Montel’s Theorem. Eventually, we will
show that the Julia set of a complex analytic map contains infinitely many
points, all of which lie outside of the basin of attraction of z0. This extends
the above theorem to non-polynomial maps.

2. This Theorem is more general than our result on maps with negative
Schwarzian derivative since it applies to such polynomials as P (x) = 1

3x
3+x,

which have positive Schwarzian derivative at certain points. Also, complex
polynomials may have non-real Schwarzian derivative.

3. As we remarked after Theorem 4.1, ∞ may be regarded as an attracting
fixed point for a polynomial map. The above proof may then be used to
show that, if all of the orbits of critical points stay bounded, then the basin
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of attraction of ∞ is simply connected, at least if ∞ is included in the basin.
We will make this precise later.

Exercises.

1. Prove that the iterates of an analytic map form a normal family in the
basin of attraction of any attracting periodic point.
2. Prove that the immediate attracting basin of a (finite) attracting peri-
odic point is simply connected.
3. For |a| < 1, let

Ta(z) =
z − a

1 − az
.

Prove that Ta is an analytic homeomorphism of D = {z||z| < 1} to itself.
4. Prove that, if P is a polynomial of degree greater than one, then there
exists R > 0 such that if |z| > R then |P (z)| > |z|. Conclude that |Pn(z)| →
∞ if |z| > R.

§3.5 THE JULIA SET

The goal of this section is to derive the basic properties of the Julia set of
a polynomial map of the complex plane. While some of the arguments we use
rely on the polynomial character of the map, most do not. In fact, almost all
of the results in this section hold for more general classes of analytic maps
such as rational maps or entire functions. Curiously, it is not altogether
easy to verify that the Julia set is non-empty. Even for polynomials, most
proofs of this fact involve topological rather than algebraic techniques. The
following proposition establishes that the Julia set is non-empty for many,
but not all, polynomials. We first need a lemma.

Lemma 5.1. Let R(z) be a polynomial of degree n ≥ 2 with distinct zeroes
ζ1, . . . , ζn. Then

n∑
i=1

1
R′(ζi)

= 0.

Proof. When n = 2, the result is a straightforward calculation. For n > 2,
we use induction. Let R(z) = (z − ζn) Q(z) where the roots of Q(z) are
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ζ1, . . . , ζn−1. Suppose all of the ζi are distinct. By partial fractions we have

1
Q(z)

=
n−1∑
i=1

1
(Q′(ζi))(z − ζi)

.

Hence
1

Q(ζn)
=

n−1∑
i=1

1
Q′(ζi)(ζn − ζi)

.

Now R′(ζn) = Q(ζn) and R′(ζi) = (ζi − ζn)Q′(ζi) for i < n. Hence

n∑
i=1

1
R′(ζi)

=
1

Q(ζn)
+

n−1∑
i=1

1
(ζi − ζn)Q′(ζi)

=
1

Q(ζn)
− 1

Q(ζn)
.

q.e.d.

Proposition 5.2. Let P (z) be a polynomial. Then either
1. P (z) has a fixed point q with P ′(q) = 1,
2. P (z) has a fixed point q with |P ′(q)| > 1.

Proof. Let R(z) = P (z) − z. Then the roots of R are precisely the fixed
points of P . If the roots of R are not all distinct, then there exists ζ with
R(ζ) = 0 and R′(ζ) = 0. But then P (ζ) = ζ and P ′(ζ) = 1. Hence we may
assume that the roots of R are all distinct. Let ζ1, . . . , ζn be these roots.

By the lemma, we have

n∑
i=1

1
P ′(ζi) − 1

=
n∑

i=1

1
R′(ζi)

= 0.

Suppose |P ′(ζi)| ≤ 1 but P ′(ζi) �= 1 for all i. Then P ′(ζi) − 1 lies in the
circle |z + 1| ≤ 1 minus the origin. Therefore 1/(P ′(ζi) − 1) is well defined
and lies in the left-half plane. But since

n∑
i=1

1
P ′(ζi) − 1

= 0,

at least one of the P ′(ζi) − 1 must lie in the region Re z ≥ 0. This contra-
diction establishes the result.

q.e.d.
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Thus, either P has a repelling fixed point (and so J(P ) �= ∅) or else P
has a neutral fixed point with derivative exactly one. In the next section, we
will show that such a point is necessarily a limit of repelling periodic points.
Assuming this result for the time being, we have

Proposition 5.3. Let P be a polynomial of degree n ≥ 2. Then J(P ) �= φ.

Remark. A polynomial may not have any repelling fixed points. Indeed
P (z) = z + z2 has a unique fixed point at 0 with derivative 1. It is easy to
check that P has a repelling periodic point of period two, however.

The proof of the following proposition is straightforward.

Proposition 5.4. J(P ) = J(Pn).

Our definition of the Julia set as the closure of the repelling periodic
points is not the classical one. Since the time of Fatou and Julia, it has
been standard to define this set as the set of points at which the family of
iterates of P fails to be normal. The following Theorem shows that these
two definitions are equivalent.

Theorem 5.5. J(P ) = {z|{P n} is not normal at z}.

Proof. We have already shown that {Pn} is not normal at any point in
J(P ). Hence, it suffices to show that there is a repelling periodic point in
any neighborhood of a point where {P n} fails to be normal. Toward that
end, suppose {Pn} is not normal at p and let W be a neighborhood of p. We
will produce a repelling periodic point in W .

Since J(P ) �= φ, we may find a repelling periodic point z0. By Proposi-
tion 5.4, we may assume that z0 is a fixed point for P . By the results of the
previous section, there is a neighborhood U0 of z0 such that P : U0 → C is a
diffeomorphism. Hence P−1 is well-defined on U0 and maps U0 inside itself.
Let Ui = P−i(U0) and note that Ui+1 ⊂ Ui and ∩Ui = {z0}.

Since {Pn} is not normal at p, there is a point z1 ∈ W and an integer n
such that Pn(z1) = z0. Similarly, since {Pn} is not normal at z0, there is a
point z2 ∈ U0 and an integer m such that Pm(z2) = z1; this uses the obvious
fact that z1 is not an exceptional point. Hence Pm+n(z2) = z0. For later
use, we note that z2 is a homoclinic point.

We now make the simplifying assumption that (Pm+n)′(z2) �= 0. If z2 is
a critical point for Pm+n, then some modifications to the following argument
are necessary. We leave these details to the reader. Since (Pm+n)′(z2) �= 0,
there is a neighborhood V of z2 which is contained in U0 and which is mapped
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diffeomorphically onto a neighborhood of z0 by Pm+n. By adjusting V , we
may assume that Pm(V ) ⊂ W and that Pm+n maps V diffeomorphically
onto Uj for some j. It follows that Pm+n+j is a diffeomorphism mapping
V onto U0. Consequently, this map has an inverse which contracts U0 onto
V . There is a fixed point for Pm+n+j in V which, by the Schwarz lemma,
must be repelling. The orbit of this repelling periodic point enters W , since
P m(V ) ⊂ W .

q.e.d.
This important result has a number of immediate consequences which

describe the structure of and the dynamics on the Julia set. For example,
the proof shows that any point at which {Pn} is not normal is a limit point
of repelling periodic points. Hence we have:

Corollary 5.6. J(P ) is a perfect set.

It is clear that the set of repelling periodic points is invariant under
P . However, it is not so obvious that this is true for inverse images of P .
Nevertheless, using Theorem 5.5, we have

Corollary 5.7. J(P ) is completely invariant.

Proof. If {P n} is not normal at z0, then {Pn} is not normal at any inverse
image of z0 as well. Hence, by Theorem 5.5, if z0 ∈ J(P ), then P−1(z0) ∈
J(P ) as well.

q.e.d.
Recall that a homoclinic point z to a repelling fixed point z0 is one for

which there exists n > 0 for which Pn(z) = z0 and for which there is a
sequence of inverse images P−i(z) converging to z0. The proof of Theorem
5.5 also gives

Corollary 5.8. Every repelling periodic point of P admits homoclinic points.
Moreover, homoclinic points are dense in J(P ).

Remarks.
1. It follows that every point in J(P ) has a neighborhood on which some
sufficiently high iterate of P has an invariant set on which the map is con-
jugate to the shift. Thus the symbolic dynamics introduced back in §1.6
actually occurs locally near every point in the Julia set!
2. It is easy to modify the above arguments to show that, if z1 and z2
are repelling periodic points, then there are heteroclinic orbits connecting



§3.5 THE JULIA SET 287

them, i.e., there is a point z which eventually maps onto z2 and for which a
sequence of backwards iterations of P n converge to z1.

We have seen that the forward images of a neighborhood of any point in
J(P ) must eventually cover any non-exceptional point in C, never mind in
J(P ) alone. If we apply this fact to J(P ), we see that the preimages of any
point in J(P ) must be dense in J . That is,

Proposition 5.9. Let z0 ∈ J(P ). Then

J(P ) = closure
( ∞⋃

k=0
P−k(z0)

)
.

This proposition yields a good algorithm for plotting Julia sets graphi-
cally. One simply finds a repelling fixed point for F and computes its preim-
ages. One can also use this idea to describe completely certain Julia sets.

Another consequence is the following result.

Corollary 5.10. J(P ) has empty interior.

Proof. If J(P ) contains an open set, then J(P ) = C minus the exceptional
points. But this cannot occur since the basin of attraction of ∞ does not lie
in the Julia set.

q.e.d.
We remark that this result is the only result in this section which is not

true for rational or entire maps.

Example 5.11. Let Q2(z) = z2 − 2. Then J(Q2) is the closed interval
−2 ≤ x ≤ 2. This may be proved by noting that this interval is closed,
completely invariant, and contains a repelling fixed point at x = 2 and its
preimage at x = −2. Thus J(Q2) is contained in this interval. To see that
J(Q2) actually is this interval, we use the fact that the boundary of the
basin of attraction of ∞ lies in J(Q2) (see Exercise 3). Since the orbit of 0 is
trapped in the interval, it follows from our remarks after Theorem 4.1 that
the basin at ∞ is simply connected. Hence J(Q2) cannot have two disjoint
pieces, and so J(Q2) is the interval.

As a remark, the map Q2 is topologically conjugate to z → 4z(1 − z),
so this gives an alternative proof that this map has dense periodic points in
the unit interval. See §1.8. See also Exercises 6-8.

As we mentioned in the introduction to this chapter, the Julia set is
precisely the set which carries the chaotic dynamics of P .
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Theorem 5.12. P is chaotic on J(P ).

Proof. As periodic points are dense in J(P ) by definition, it suffices to
show that P is topologically transitive and also depends sensitively on initial
conditions. Let z1, z2 ∈ J(P ) and suppose that Ui is a neighborhood of zi.
We may assume that z1 and z2 are repelling periodic points. By the remark
after Corollary 5.8, there is a heteroclinic orbit connecting z1 and z2. It
follows immediately that P is topologically transitive. Since this heteroclinic
orbit lies in J(P ), it also follows that P has sensitive dependence on initial
conditions.

q.e.d.

Remark. One can say more: on its Julia set, P is locally eventually onto.
This means that if U is any open set meeting J(P ), then there is an integer
n for which P n(U ∩ J(P )) = J(P ). See Exercise 4.

Exercises

1. Describe the Julia set of C(z) = z3 − 3z.

2. Describe the Julia set of rational maps of the form R(z) = 1/zn where
n ≥ 2.

3. Prove that the boundary of the basin of attraction of ∞ for a polynomial
lies in the Julia set.

4. Prove that a polynomial map is locally eventually onto its Julia set.

5. Extend the proof of Proposition 5.2 to the case of rational functions of
the form P (z)/Q(z) where P and Q both have degree n ≥ 2.

6. Let log z denote the principal branch of the natural logarithm function,
i.e.,

log : C − {x | x < 0} → {z �∈ C | |Im z| < π}.

Show that

2 cos(i log z) = z +
1
z
.

7. Use the result of Exercise 6 to prove that the function R(z) = z+ 1
z maps

the exterior of the unit circle onto the exterior of the interval −2 ≤ x ≤ 2 in
C.

8. Use the result of Exercise 7 to show that R gives a conjugacy between
Q0(z) = z2 and Q−2(z) = z2 − 2 which takes the exterior of the unit circle
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to the exterior of the interval −2 ≤ x ≤ 2. Conclude all orbits of Q−2 in the
exterior of this interval tend to ∞.

§3.6 THE GEOMETRY OF JULIA SETS

Our goal in this section is to present a variety of examples of Julia sets of
polynomials and rational functions. Thus far, the examples of Julia sets that
we have encountered (the unit circle, a closed interval, a Cantor set) have
been relatively unexciting geometrically. Indeed, one might be fooled into
thinking that Julia sets are usually either smooth curves or Cantor sets in C.
Actually, this is far from the truth. We hope to illustrate in this section some
of the complex and bizarre shapes that a Julia set of a quadratic polynomial
may assume.

Example 6.1. We first consider the Julia set of Qc(z) = z2 + c for c near 0.
Recall from §3.2 that Q0 has an attracting fixed point at 0 and that J(Q0)
is the unit circle. This circle clearly bounds both the basins of attraction at
0 and at ∞. For |c| small, a similar phenomenon occurs. Qc is easily seen
to have an attracting fixed point near 0 as long as |c| is small. Moreover, it
is an easy exercise to show that the boundary of the basin of attraction of
this fixed point again lies in the Julia set of Qc. As before, this boundary is
a simple closed curve. However, it is far from being a smooth curve; indeed,
it contains no smooth arcs whatsoever!

Proposition 6.2. Suppose |c| < 1/4. Then the Julia set of Qc is a simple
closed curve.

Proof. Let Γ0 denote the circle of radius 1/2 about 0. Γ0 contains both the
attracting fixed point and the critical point of Qc in its interior. Moreover
|Q′

c(z)| > 1 for z in the exterior of Γ0.
For each θ ∈ S1, we will define a continuous curve

γθ: [1, ∞) → C

having the property that z(θ) = limt→∞ γθ(t) is a continuous parametrization
of J(Qc). To define z(θ), we first note that the preimage Γ1 of Γ0 under Qc is
a simple closed curve which contains Γ0 in its interior and which is mapped
in a two-to-one fashion onto Γ0. The fact that Γ1 is a simple closed curve
follows from the fact that both the critical point and its image lie inside Γ0.
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Hence the curves Γ0 and Γ1 bound an annular region A1 (A1 may be
regarded as a fundamental domain for the attracting fixed point for Qc).

Let N be the standard annulus defined by

N =
{
reiθ | 1 ≤ r ≤ 2, θ arbitrary

}
.

Choose any diffeomorphism φ: N → A1 which maps the inner and outer
boundaries of N to the corresponding boundaries of A1. See Fig. 6.1. This
allows us to define the initial segment of γθ: [1, 2] → C by

γθ(r) = φ(reiθ).

That is, γθ is the image of a ray in N under φ.

Fig. 6.1. The diffeomorphism φ:N → A1.

For r ≥ 2, we may extend γθ as follows. Qc has no critical points in
the exterior of Γ1. Hence there is a simple closed curve Γ2 which is mapped
in a two-to-one fashion onto Γ1. Moreover, Qc maps the annular region
A2 between Γ1 and Γ2 onto A1, again in a two-to-one fashion. Thus, the
preimage of any γθ in A1 is a pair of non-intersecting curves in A2. There is
a unique such curve which meets the inner boundary Γ1. Hence, for each θ,
there is a unique curve in A2 which contains the point γθ(2). We may thus
sew together these two curves in the obvious way at this point, producing a
single curve defined on the interval [1,3]. Continuing in this fashion, we may
extend each γθ over the entire interval [0, ∞).

Now recall that |Q′
c(z)| > k > 1 provided z lies in the exterior of Γ1.

Hence the lengths of each extension of γθ decrease geometrically. It follows
that γθ(t) converges uniformly in θ and that

lim
t→∞

γθ(t) = z(θ)
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is a unique point in C for each θ.
We claim that z(θ) parametrizes a simple closed curve in C. Clearly, z(θ)

is continuous, because of the uniform convergence in θ. To show that the
image curve is simple, we must prove that if z(θ1) = z(θ2), then z(θ) = z(θ1)
for all θ with θ1 ≤ θ ≤ θ2. However, if this were not the case, then portions
of the curves Γ1, γθ1(t) and γθ2(t) would bound a simply connected region
containing each z(θ) in its interior. See Fig. 6.2. This implies that there
is a neighborhood of z(θ) whose images under Qn

c remain bounded. Hence
z(θ) �∈ J(Qc). But this is impossible.

q.e.d.

Fig. 6.2.

Now suppose that c is complex and satisfies |c| < 1/4. Qc has a repelling
fixed point at z0 = (1 +

√
1 − 4c)/2. It is easy to check that Q′

c(z0) is a
complex number which is not pure imaginary. It follows that z0 does not lie
in a smooth arc in z(θ). For if this were the case, then the image of z(θ)
would also be a smooth arc in J(Qc) passing through z0. Since Q′

c(z0) is
complex, the tangents to these two curves would not be parallel. Therefore,
z(θ) would not be simple at z0. Since the preimages of z0 are dense in J(Qc)
by Proposition 5.9, it follows that J(Qc) contains no smooth arcs. We have
proved

Proposition 6.3. Suppose c is complex and |c| < 1/4. Then J(Qc) is a
simple closed curve which contains no smooth arcs.

Figure 6.3 illustrates several Julia sets for Qc = z2 + c for which J(Qc)
is a simple closed curve.
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Fig. 6.3. The Julia sets for Qc where c = −1
2 − 1

10i, left, and c = 1
2i.

Remark. The condition |c| < 1/4 in Propositions 6.2 and 6.3 may be
relaxed somewhat. All we need is that Qc have an attracting fixed point.
This occurs for all values of c inside a cardioid in the c-plane. See Exercise 1.
Moreover, one can actually prove that the Julia set for these Qc is actually
non-differentiable at every point on the simple closed curve.

Example 6.4. We now turn to the case of an attracting periodic rather
than fixed point. The Julia set is necessarily much different in this case. Let
P (z) = z2 − 1. Note that P (0) = −1 and P (−1) = 0. Since P ′(0) = 0, it
follows that 0 and −1 lie on an attracting periodic orbit of period 2.

The dynamics of P on the real line are relatively straightforward: there
are two repelling fixed points at (1 ±

√
5)/2. The fixed point at (1 −

√
5)/2

is the dividing point between the basin of attraction of 0 and −1. Using
arguments as in the proof of Proposition 6.2, one may show that there are two
simple closed curves γ0 and γ1 in J(P ) which surround 0 and −1 respectively.
The curves γ0 and γ1 meet at the fixed point (1 −

√
5)/2. There is much

more to J(P ) however. Unlike the situation for Qc, the basin of attraction
of 0 is not completely invariant. One preimage of the interior of γ0 is clearly
γ1, but there must also be another surrounding the other preimage of 0,
namely 1. That is, there is a third simple closed curve in J(P ) surrounding
1 as well. Now both 1 and −1 must have a pair of distinct preimages, each
surrounded by a simple closed curve in J(P ). Continuing in this fashion, we
see that J(P ) must contain infinitely many different simple closed curves.
See Fig. 6.4.
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Fig. 6.4. The Julia set of P (z) = z2 − 1.

The fact that there are infinitely many connected components in the
stable set of P is no accident, since we have

Proposition 6.5. Suppose P is a polynomial of degree 2. Then the stable set
of P consists of either one, two, or infinitely many connected components.

The proof of this Proposition is a straightforward exercise (see Exercise
5). We note that all these cases can occur, as we have shown for Qc when
|c| ≥ 2, |c| < 1/4, and c = −1 respectively.

Example 6.6. Our third example in this section is again a quadratic polyno-
mial. Recall from §1.11 that there is a polynomial of the form Qc(z) = z2 +c
for which c is real and

1. The critical point at 0 satisfies Q3
c(0) is a repelling fixed point −p,

i.e., 0 is eventually periodic.
2. Qc has dense (repelling) periodic points in the interval [−p, p].

Numerically, the value of c which produces this phenomenon is c ≈ −1.543689
and −p ≈ −.83928675 . . . . The graph of Qc is depicted in Fig. 6.5.

Hence the interval [−p, p] is contained in J(Qc). By backward invariance,
all of the preimages of this interval also lie in J . Indeed, J(Qc) is the closure
of this set of intervals.

Now Qc has a second repelling fixed point at q and, using graphical anal-
ysis, it is easy to see that [−q, q] ⊂ J(Qc). Since c ∈ (−q, q), the preimage
of this interval consists of two intervals, [−q, q] itself and a second interval
located symmetrically about 0 but on the imaginary axis. This interval is
the preimage of [−q, c]. Now the preimage of this pair of intervals consists
of four curves as depicted in Fig. 6.6. These curves intersect at 0 and at
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Fig. 6.5.

Q−1
c (0). Continuing, we see that Q−n

c ([−q, q]) consists of 2n disjoint curvi-
linear segments. These segments meet one another at the preimages of 0
and the endpoints of these segments are preimages of the fixed point q. By
the results of §3.5, J(Qc) is the closure of this set of preimages. Note that,
unlike the previous examples, Q−n

c ([−q, q]) does not bound a region in C.
The tree-like structure of ∞⋃

n=0
Q−n

c [−q, q]

is called a dendrite. The full Julia set of this map is depicted in Fig. 6.7.
These three examples illustrate the dependence of the Julia set on the

orbit of the critical point, at least for quadratic maps. When the critical
point tends to ∞, the Julia set is a Cantor set as illustrated in §3.2. When
the critical point tends to an attracting fixed or periodic point, the Julia set
is the closure of one or many simple closed curves. And when the critical
point is eventually periodic but not periodic, the Julia set is a dendrite as
illustrated above.

For the polynomial Qi(z) = z2 + i, the points −1 + i and −i lie on a
repelling periodic orbit of period 2. Note that Q2

i (0) = −1 + i, so 0 is again
eventually periodic. The Julia set of Qi thus shares many of the properties
of the previous example. J(Qi) is depicted in Fig. 6.8.

Remark. The quadratic polynomials clearly exhibit a vast array of differ-
ent phenomena. One way to catalogue all of this is to sketch the bifurcation
diagram for these maps. Since quadratic maps depend on only one param-
eter, the complex number c, this bifurcation diagram lies in the complex
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Fig. 6.6.

Fig. 6.7. The Julia set of Qc.

plane. The natural way to picture the bifurcation diagram is to indicate all
parameter values for which the polynomial has an attracting periodic point.
One may also compute the set of parameter values for which the orbit of the
critical point remains bounded. These two sets are virtually the same. The
resulting locus in the parameter plane is called the Mandelbrot set and is
the subject of much contemporary research.

Example 6.7. Our final example in this section is intended to show two
things. First, this example is a rational function rather than a polynomial,
so the dynamics of this map are more efficiently described on the Riemann
sphere. Second, the Julia set for this map is the entire Riemann sphere, a
phenomenon that cannot occur for polynomials by Corollary 5.10.
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Fig. 6.8. The Julia set of Qi(z) = z2 + i.

To describe this map, we need to use some properties of elliptic functions,
and, in particular, the Weierstrass ℘-function. This is not an elementary
topic in complex analysis. Rather than develop this topic at length, however,
we will simply list several properties of the ℘-function. We hope that the
beautiful geometry associated with this function will motivate the reader to
consult any of the standard references such as Ahlfors’ text for a complete
treatment of this topic.

Let us begin by describing a map on the torus that is very similar to
the Anosov or hyperbolic toral automorphisms discussed in §2.4. Let ω ∈ R.
Regard the torus T as the square in the plane with sidelength ω and opposite
sides identified. Equivalently, T may be regarded as C modulo the lattice
generated by ω and ωi. By this we mean we identify any two points in C
which differ by a complex number of the form nω + mωi where n, m ∈ Z. In
particular, the horizontal sides of the square given by y = ωi and y = 0 are
to be identified, as are the vertical sides given by x = 0 and x = ω. We will
regard ω as a parameter in what follows.

As a remark, we may use any lattice in the plane to define the torus
and the resulting map. Let α, β ∈ C and suppose Im (α/β) �= 0. Note that
0, α, β, and α + β determine a parallelogram in C, so that C modulo the
lattice generated by α and β is also the torus. For simplicity, however, we
will restrict our attention to the square lattice generated by ω and ωi.

Now let A(z) = 2z on C. Since A preserves the lattice points, it follows
that A induces a map on T which we also denote by A. A is a four-to-one
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map of T to itself which resembles in many respects the hyperbolic toral
automorphisms of §2.4. In particular, repelling periodic points are dense in
T (see Exercise 6).

We now wish to project the dynamics of A on T to a map on the Riemann
sphere C. The projection map π: T → C is easy to describe geometrically.
We simply identify each point in T with its “negative” and the result is a
sphere. To see this, we first take the fundamental square S in C with vertices
at 0, ω, ωi, and ω + ωi. Next, draw the diagonal ∆ from ω to ωi. ∆ divides
S into two congruent triangles, S1 and S2. Under the identification of z with
−z, each point in the interior of S1 is identified with a unique point in the
interior of S2. See Fig. 6.9.

Fig. 6.9. The pairs of points z and z′

and q and q′ are to be identified in S.

The identifications on the boundaries of S1 and S2 are more complicated.
Each point on one of the boundary segments of S1 is identified with a unique
point on the same segment with the exception of the endpoints and the mid-
points. That is, the points ω/2, ωi/2 and (ω + ωi)/2 have no partners under
this identification. Similarly, all of the vertices of S1 are already identified
in T , and so the point 0 also has no partner under this identification.

Thus we may visualize the sphere as the triangle S1 with all three vertices
glued together and each of the sides folded in half and glued together. The
result of this operation is a map φ: T → C which has four critical points at
precisely the points 0, ω/2, ωi/2, and (ω + ωi)/2.

The map φ: T → C may be written down explicitly, for φ is given by the
Weierstrass ℘-function.
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Definition 6.8. The Weierstrass ℘-function ℘:C → C is given by

℘(z) =
1
z2 +

∑
ν �=0

( 1
(z − ν)2

− 1
ν2

)

where the sum ranges over all of the lattice points ν = mω + nωi except
ν = 0.

We remark that this definition makes perfect sense on any lattice in C,
not just the square lattice generated by ω and ωi. Let us list the properties
of ℘(z) that we need.

1. ℘(z) is an analytic function with poles at exactly the lattice points
in C.

2. ℘(z +ω) = ℘(z +ωi) = ℘(z) so ℘ is a doubly-periodic function. Such
functions are called elliptic functions in complex analysis. Thus ℘
may be regarded as a map on T .

3. ℘(z) = ℘(−z), so that ℘ respects the identification above. Hence we
have ℘: T → C as required.

4. ℘′(z) �= 0 as long as z is not one of the half-lattice points 0, ω/2, ωi/2,
or (ω + ωi)/2.

5. The Addition Theorem. ℘(z) satisfies the following relation for any
z, u ∈ C

℘(z + u) + ℘(z) + ℘(u) =
1
4

(
℘′(z) − ℘′(u)
℘(z) − ℘(u)

)2

where
(℘′(z))2 = 4(℘(z))3 − g2(ω)℘(z).

Here, (℘′(z))2 means the square of ℘′(z), not the second iterate. Also,
the coefficient g2 depends on the parameter ω only.

6. As a consequence of the Addition Theorem, we have

℘(2z) =
(℘(z))4 + 1

2g2(℘(z))2 + 1
16g2

2
4(℘(z))3 − g2℘(z)

.

Consequently, we have the following diagram

T A
−→ T

℘↓ ↓℘
C R

−→ C.
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Because of property 6 above, this diagram commutes. Moreover, the map R
is given by

R(z) =
z4 + 1

2g2z
2 + 1

16g2
2

4z3 − g2z
=

(
z2 + g2

4

)2

4z(z2 − g2)
.

That is, R is a rational map of C. Now periodic points of A project to
periodic points for R and so R has dense periodic points. Consequently,
J(R) = C, as we claimed.

Remarks.
1. It is easy to check that all of the critical points of R are eventually
periodic. This is a special case of an important result which asserts that if
all critical points of a rational (non-polynomial) map are eventually periodic
but not periodic, then J = C.
2. All of this works for the general lattice generated by α, β ∈ C where
Im (α/β) �= 0. In this case, we have

(℘′(z))2 = 4(℘(z))3 − g2℘(z) − g3.

where g2 and g3 are parameters depending only on α and β. The resulting
rational maps assume the form

R(z) =
z4 + 1

2g2z
2 + 2g3z + 1

16g2
2

4z3 − g2z − g3
.

3. J = C may also occur for entire functions, as we will show in §3.8 for
exp(z).

Exercises

1. Let Qc(z) = z2+c. Show that {c | Qc has an attracting point} is bounded
by a cardioid in the c-plane. Show that {c | Qc has an attracting periodic
point of period two} is bounded by a circle in the c-plane. This is the
beginning of the construction of the Mandelbrot set or the bifurcation set
for the family Qc. We will discuss this topic in further detail in §8.
2. Prove that the boundary of the basin of attraction of an attracting fixed
point lies in the Julia set.
3. Prove that the boundary of a completely invariant basin of attraction of
an attracting fixed point must be the entire Julia set.
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4. Let C be the immediate basin of attraction of an attracting fixed point.
Suppose D �= C is another component of the stable set which maps onto C.
Prove that there must therefore be infinitely many components in the stable
set.
5. Prove that if a polynomial P of degree 2 has a completely invariant
component C of its stable set, then C must contain all of the critical points
of P (not including, of course, the “critical point” at ∞). Use this to prove
Proposition 6.5.
6. Let T be the torus generated by C modulo the lattice ω, ωi where ω ∈ R.
Let An:T → T be the map induced by multiplication by the integer n with
|n| ≥ 2. Prove that repelling periodic points of An are dense in T . Show also
that An is n2-to-one in T .
7. Construct a lattice which generates a torus T and a map A: T → T that
is induced by multiplication by some nonzero complex number and which is
two-to-one on T .
8. Show that all of the critical points of the map

R(z) =

(
z2 + g2

4

)2

4z(z2 − g2)

are eventually periodic.

§3.7 NEUTRAL PERIODIC POINTS

In this section, we take up the difficult problem of the behavior of an
analytic function in the neighborhood of a neutral or indifferent periodic
point. These points come in two distinctly different varieties. First, there
are the rationally indifferent points where the derivative is a rational rotation
of the form e2πi(m/n) where m and n are integers. We will describe the local
behavior completely in this case. The other case, irrational rotations, is much
more subtle and difficult and we will confine our remarks to some special
cases. As we have noted before, bifurcations often occur when hyperbolicity
breaks down. This is the case for complex analytic maps as well and we will
describe these local bifurcations in the exercises.

Let us begin with a simple case. Let F (z) have a fixed point at the origin
with derivative equal to one. Hence

F (z) = z + a2z
2 + a3z

3 + . . . + anzn.
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The first non-zero coefficient ak plays a crucial role in determining the dy-
namics of F . For the moment, let us assume that a2 �= 0. By conjugating by
z → a2z, we may in fact take a2 = 1.

In the simple case of the one-dimensional map F (x) = x + x2, graphical
analysis shows that points are attracted to 0 from the left and repelled from
0 on the right. The following proposition shows that a similar phenomenon
occurs in the complex plane.

Proposition 7.1. Let P (z) = z + z2 +a3z
3 + . . .+anzn. There exists µ > 0

such that
1. all points in the interior of the circle of radius µ centered at −µ are

attracted to 0.
2. all points in the interior of the circle of radius µ centered at µ are

repelled from 0.

Proof. The local structure near the fixed point is easiest to understand if we
eliminate the fixed point entirely by throwing it to ∞. This is accomplished
by conjugating P with the Möbius transformation H(z) = 1/z as usual. This
yields the new map.

G(z) =
zn

zn−1 + zn−2 + a3zn−3 + . . . + an
.

Dividing, we may write

G(z) = z − 1 + G0(z).

where

G0(z) =
b2z

n−2 + . . . + bn

zn−1 + zn−2 + a3zn−3 + . . . + an
.

Note that
lim

|z|→∞
G0(z) = 0.

Thus, near ∞, G is essentially translation by one unit to the left. In particu-
lar, there is a δ > 0 such that, if η > δ and Re (z) < −η, then Re (G(z)) < −η
as well. So G maps each half plane Re (z) < −η inside itself.

Under H, the half plane Re (z) < −η is mapped inside the circle of
radius 1/2η centered at −1/2η. Consequently, points inside these circles are
attracted to 0 under iteration of P . Thus, if µ = −1/2δ, part 1 holds. For
part 2, we argue similarly, this time using the half-plane Re z > η.

q.e.d.
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Fig. 7.1.

Figure 7.1 illustrates the geometric content of this proposition.
By choosing different regions near ∞, one can describe the local dynamics

in even more detail. For example, if we choose a portion of a wedge near ∞
as illustrated in Fig. 7.2, then the basin of attraction of 0 contains a family
of cardioid-like curves.

We call such a region an attracting petal for P . More precisely, a simply
connected region C is an attracting petal for the indifferent fixed point z0 if
z0 is contained in the boundary of C and for each z ∈ C, Pn(z) → z0. A
repelling petal is defined analogously. Note that, if we choose cardioid-like
curves for the boundaries of the petals, the attracting and repelling petals
can be made to overlap. This means that most, but not all points near 0
simply make a circuit from the repelling to the attracting side of 0. The
example z → z + z2 shows that not all points make this circuit, as points on
the positive real axis tend to ∞. In fact, it is exactly in the “mouth” of the
attracting cardioid that the Julia set slips into a neighborhood of 0, a fact
that we will prove below.

When the coefficient a2 vanishes, the situation is more complicated. This
is illustrated by the following example.

Example 7.2. Let P (z) = z + z3. Note that if z ∈ R, z �= 0, then
P n(z) → ∞. On the other hand, P preserves the imaginary axis as well and
we have P (iy) = i(y − y3). Graphical analysis of the one-dimensional map
y → y −y3 shows that if |y| <

√
2, then Pn(iy) → 0. The point ±i

√
2 lies on

a repelling periodic orbit of period 2. Thus there are at least two attracting
and two repelling petals for P . In fact, there are exactly two petals of each
type, as we will prove below. See Fig. 7.3.

Example 7.3. More generally, consider P (z) = z + zn+1. Let λ be an
nth root of unity. Then the straight line t → tλ is preserved by P since
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Fig. 7.2.

Fig. 7.3. The dynamics of P (z) = z + z3 and P (z) = z + z5.

P (tλ) = λt(1 + tn). Graphical analysis allows us to determine the dynamics
on each of these invariant lines. For example, if n is even, then P j(λt) → ∞
for all t �= 0. So all of these lines are repelling. In this case, if ω is an nth

root of −1, it is easy to check that the lines ωt are locally attracting (see
Exercise 7.1). See Fig. 7.3.

In the general case, let us suppose that ak �= 0 but ai = 0 for i =
2, . . . , k − 1. Then we claim that there are k − 1 attracting and repelling
regions for P . This may be seen as follows. Let H(z) = 1/zk−1. H is no
longer a conjugacy since the inverse of H is not well-defined. However, on
the plane Re z < −η used in the proof of Proposition 7.1, we may choose an
analytic branch of the inverse, i.e., a well-defined (k − 1)st root of z. If we
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fix this inverse map, then one may check that P is conjugate to the map

G(z) =
zn

zn−1 + kzn−2 + K(z)

where K(z) involves terms of the form

αijz
i
(
z

1
k−1

)j

for i < n − 2 and 0 ≤ j < k − 1. Here we emphasize that the term z1/k−1

denotes the fixed branch of the (k − 1)st root of z chosen at the outset. The
remainder of the proof is now analogous to the above and hence is omitted.

Each different choice of a (k − 1)st root yields a different projection from
the plane Re z < −η to C. Hence we have shown the following.

Corollary 7.4. Let P (z) = z + akz
k + . . . + anzn where ak �= 0. Then there

are exactly k − 1 attracting and repelling petals for P at 0.

The previous discussion allows us to handle the case of rationally indif-
ferent fixed points. Suppose λm = 1 but λj �= 1 for 1 ≤ j < m. Then the
map

P (z) = λz + a2z
2 + . . . + anzn

has a rationally indifferent fixed point at the origin. Clearly Pm(z) = z+ . . .,
so that Pm(z) is in the form considered above. Actually, one can prove
directly that Pm assumes the form

Pm(z) = z + b�m+1z
�m+1 + . . .

for some 	 > 0. That is, all of the coefficients of zk vanish (since λm = 1 ) up
to and including the (	m)th for some 	 (see Exercise 7.5). We choose to take
a different route to this fact by drawing upon our prior work with normal
forms.

Lemma 7.5. Let

P (z) = λz +
n∑

k=2
akz

k

where λm = 1 but λj �= 1 for 1 ≤ j < m. Then for some 	 > 0, there is a
neighborhood U of 0 and an analytic map H : U → C such that H−1 ◦P ◦H
assumes the form λz + bm�+1z

m�+1 + . . . .
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Proof. This proof mimics exactly the reduction to normal form described in
§2.9. Hence we will merely begin the reduction process, leaving the remaining
details as an exercise.

We try first to eliminate the second order term in P . Let

P2(z) = λz + b3z
3 + . . .

and set H(z) = z+Az2. The goal is to determine A such that H◦P2 = P ◦H.
One may check easily by comparing second order terms in the above equation
that this equality necessitates

A =
a2

λ2 − λ
.

Thus, we can only eliminate these terms if either a2 = 0 or λ �= 0, 1. One
may continue to eliminate successively higher order terms in exactly the same
fashion, by determining a conjugacy H(z) = z + Azk that kills each term in
succession.

q.e.d.
Thus we may assume at the outset that P (z) = λz + zm�+1 + . . . where

we have made a preliminary change of variables that makes the coefficient of
zm�+1 equal to 1. Then one computes readily that

Pm(z) = z + mλm−1zm�+1 + . . . .

This is precisely the form of the maps considered in the first part of this
section: hence we conclude that Pm has a total of m	 attracting and m	
repelling petals. Thus we have proved

Theorem 7.6. Let P (z) = λz+ . . . where λm = 1 but λj �= 1 for 1 ≤ j < m.
Then there is an 	 > 0 such that P admits m	 attracting and m	 repelling
petals at 0. Each petal is fixed by Pm(z).

At this point, we can fill the slight gap that we left in our discussion of
the Julia set in §3.5. Recall that, in our efforts to prove that the Julia set
was nonempty, we showed that a polynomial P map either has a repelling
fixed point or a fixed point with derivative one. To complete the proof that
J �= φ, it suffices to show that these latter points are actually limit points of
repelling periodic points (establishing, in particular, that there are repelling
periodic points for P ). To do this, we will combine the local theory around
a neutral fixed point with the ideas of normal families developed in §3.3 to
produce a homoclinic point to 0, and thus a nearby repelling periodic point.
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As usual, we may assume that the neutral fixed point is at 0. Hence we
may write P (z) = z + αkz

k + . . . where αk �= 0. Note first that {P n} is not
normal in any neighborhood of 0. This follows since Pn(z) = z +nαkz

k + . . .

and therefore (Pn)[k](0) = nαkk! Consequently,

lim
n→∞ |(P n)[k](0)| → ∞

and no subsequence of the P n can converge to an analytic function at 0.
Since 0 is not an exceptional point, there exists z0 �= 0 such that P (z0) =

0. Let U be a neighborhood of 0 not containing z0. We may assume that U
is contained in the union of attracting and repelling petals, i.e., that if z ∈ U
we either have P n(z) → 0 as n → ∞ or else as n → −∞. Since {Pn} is not
normal in U , there is an integer k and z1 ∈ U such that P k(z1) = z0. Clearly,
z1 does not lie in an attracting petal. Hence z1 must lie in a repelling petal.
This means that z1 is a homoclinic point for P .

The remainder of the proof is exactly the same as the proof of Theorem
5.5. Thus we omit the details.

q.e.d.
We now turn briefly to the behavior of an analytic map whose derivative

at a fixed point is an irrational rotation. It turns out that the Schröder func-
tional equation has a solution provided the rotation is sufficiently irrational.
This is a celebrated result of C.L. Siegel. The precise statement is

Theorem 7.7. Suppose F (z) = λz + a2z
2 + . . . and λ = e2πiα where α is

irrational. Suppose there exist positive constants a and b such that |α−p/q| >
a/qb for all p, q ∈ Z. Then there is a neighborhood U of 0 on which F is
analytically conjugate to the irrational rotation z → λz.

For a proof, we refer to the text of Siegel and Moser.

Remarks.

1. The hypothesis on α requires that α be poorly approximated by ratio-
nals. It is a fact that “most” irrationals are of this form.

2. A region on which F is conjugate to an irrational rotation is called a
Siegel disk. Since there are no other periodic points in a Siegel disk, these
regions also lie in the stable set of F .

3. This theorem does not hold for all irrational rotations, as the following
example shows.



§3.7 NEUTRAL PERIODIC POINTS 307

Example 7.8. Suppose P (z) = λz + . . .+zd where λ = e2πiα. Suppose that
α is irrational and satisfies

|λn − 1| ≤
( 1

n

)dn−1

for infinitely many natural numbers. Then we claim that P has a periodic
point in every neighborhood of 0 (and hence cannot be conjugate to a linear
irrational rotation).

To see this we simply note that the equation P n(z) − z = 0 assumes the
form

zdn
+ . . . + (λn − 1)z = 0.

0 is one root of this equation. Let ζ1, . . . , ζdn−1 denote the remaining roots.
Clearly,

|ζ1| · . . . · |ζdn−1| = |λn − 1|.
At least one of the ζi must satisfy

|ζi| ≤ |λn − 1| ≤
(1

n

)dn−1

and so there are periodic points arbitrarily close to 0.
The natural question, of course, is whether there are any irrational num-

bers λ which satisfy the inequality

|λn − 1| ≤
( 1

n

)dn−1
(∗)

for infinitely many n. To show this, we need to make a brief detour to discuss
continued fractions.

Let a0, a1, a2 . . . be a sequence of positive integers. Define a sequence of
rational numbers by

pn

qn
= a0 +

1

a1 +
1

a2 +
1

. . . 1
an

.

From Exercise 8, the denominators of these rationals satisfy

qn+1 = an+1qn + qn−1.
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As a consequence, this sequence converges to an irrational number, which we
denote by α (see Exercise 9). These numbers are the best rational approxi-
mations to α, and, from Exercise 10, they satisfy the inequality

1(
an+1 + 2

)
q2
n

<
∣∣∣∣α − pn

qn

∣∣∣∣ <
1

an+1q2
n
.

Now let us construct a λ that satisfies the above condition. For any
λ = e2πiα we have

|λn − 1| = |e2πinα − 1|
= |eπinα − e−πinα|
= 2| sin(πnα)|
= 2| sinπ(nα − m)|

for any integer m. For each n, we may choose an integer mn such that
|nα − mn| ≤ 1/2. If |x| ≤ 1/2, we have

2|x| ≤ | sin(πx)| ≤ |πx| ≤ |7x/2|

so that
4|nα − mn| ≤ |λn − 1| ≤ 7|nα − mn|.

Let us choose the an inductively so that

an+1 > 7q
(dqn)−2
n (∗∗)

and let α be the irrational whose continued fraction expansion is determined
by the an. We then have

( 1
qn

)dqn−1
>

7
an+1qn

> 7|αqn − pn| > |λn − 1|

for each n. Hence λ is an irrational rotation which satisfies (*) for infinitely
many integers.

We remark that one may choose the first k an’s arbitrarily and then
choose the remainder to satisfy (**). This produces a dense set of irrationals
which satisfy (*). Hence there are many irrational rotations which fail to
produce Siegel disks.
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Exercises

1. Describe the dynamics of the map P (z) = z + zn+1 on the straight lines
through the origin given by ωt where ω is a (2n)th root of unity.
2. Show that, if n is even this map admits n repelling periodic orbits of
period 2, one orbit on each straight line through 0 and an nth root of −1.
3. Let λ be an nth root of unity. Consider the map P (z) = λz(1 + z�n).
Describe the dynamics of these maps on the invariant lines through 0 and
an (	n)th root of ±1.
4. Prove Corollary 7.4.
5. Let P (z) = λz+a2z

2+ . . . where λ is an nth root of unity. Prove directly
that Pn(z) assumes the form

z + β�n+1z
�n+1 + . . . .

6. Complete the details of the reduction to normal form in Lemma 7.5.
7. Let S(z) = sin z. Prove that the real line lies in an attracting petal for
S at 0, while the imaginary axis lies in a repelling petal.
8. Let

pn

qn
= a0 +

1

a1 +
1

a2 +
1

. . . 1
an

be the continued fraction expansion of α. Let [ρ] denote the greatest integer
part of ρ. Given the irrational number α, show that the ai can be determined
by the following procedure:

Let a0 = [α] and r0 = α − [α] so that α = a0 + r0. We have similarly

a1 =
[ 1
r0

]

r1 =
1
r0

−
[ 1
r0

]

so that
α = a0 +

1
a1 + r1

.

Continuing in this fashion, show that the an’s are determined and an ≥ 0.
9. Prove that α is irrational.
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10. Let p−1 = 1, q−1 = 0, p0 = a0, and q0 = 1. Use induction to prove that

pn+1

qn+1
=

an+1pn + pn−1

an+1qn + qn−1
.

11. Use the previous exercise to show that

∣∣∣∣pn

qn
− pn+1

qn+1

∣∣∣∣ =
1

qnqn+1

so that pn and qn are relatively prime.
12. Prove that the continued fraction expansion of α satisfies

1(
an+1 + 2

)
q2
n

<
∣∣∣∣α − pn

qn

∣∣∣∣ <
1

an+1q2
n
.

13. Prove that α = (1 +
√

5)/2 if ai = 1 for i = 0, 1, 2, . . . .
14. Prove that α = 10 + 2

√
30 if a2k = 4, a2k+1 = 5 for k = 0, 1, 2 . . . .

The following series of exercises is designed to complement our work
in §1.12 of one-dimensional bifurcations. There are many different types of
bifurcations when we enlarge our viewpoint from the real line to the complex
plane. Even the familiar saddle node and period-doubling bifurcations are
different in this setting.
15. The saddle node. Let Pc(z) = z2 + c where c is real. On the real line,
Qc has two fixed points if c < 1/4 and none if c > 1/4. Prove that Qc has a
pair of repelling fixed points in C when c > 1/4. Thus, this complex saddle
node features a sink/source pair coalescing to form a pair of repelling fixed
points.
16. The period-doubling bifurcation. Recall that, when µ is real, the map
Fµ(z) = µz(1 − z) experiences a period-doubling bifurcation at µ = 3: for
1 < µ < 3, Fµ has one attracting fixed point and no period 2 points, but
for µ > 3, Fµ has a repelling fixed point and an attracting period 2 point
(at least for µ close to 3). Prove that, in C, Fµ has a repelling period 2
orbit for 1 < µ < 3. Hence, in the plane, this period-doubling bifurcation
features a repelling period 2 and an attracting period 1 point interchanging
their qualitative character at the bifurcation.
17. Describe the bifurcation that occurs in C for the family z → λez as λ
passes through 1/e and also as λ passes through −e.
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18. Describe the bifurcation that occurs in C for the family Sλ(z) = λ sin z
as λ increases through 1.

19. Let t > 0 and suppose λ is an nth root of unity. Consider the family
of maps

Pt(z) = tλz + zn+1 + . . . .

Describe the bifurcation that occurs as t increases through 1.

§3.8 THE MANDELBROT SET

Our goal in this section is to introduce some of the very beautiful recent
work of Mandelbrot and Douady/Hubbard on the dynamics of quadratic
polynomials of the form Qc(z) = z2 + c. While we will not prove all of the
results in this section, our previous work allows us to present many of the
basic ideas behind the Mandelbrot set. This set, the bifurcation set for the
family of functions Qc, has been called one of the most intricate and beautiful
objects in mathematics.

In this section, the role played by the critical point 0 for Qc will be most
important. We have already seen that if Qc admits an attracting periodic
orbit, then 0 must be attracted to this orbit. We also saw that, in certain
cases where J(Qc) is a Cantor set, then 0 is attracted to ∞. In this section
we will sharpen this dichotomy and then use it to define the Mandelbrot set.

Of special importance is the set of points whose orbits do not escape to
∞ under iteration of Qc.

Definition 8.1. The filled-in Julia set, Kc, of Qc is the set of points whose
orbits do not tend to ∞, i.e,

Kc = {z |Qn
c (z)−→/ ∞}.

Note that Kc always contains the Julia set of Qc, for orbits in J(Qc)
never tend to ∞. The filled-in Julia set also contains any attracting periodic
orbit and its basin of attraction, if there is such an orbit. Both Kc and
its complement are clearly completely invariant under Qc. Moreover, from
Exercises 1 and 2, we see that the set of points whose orbits escape to ∞ is
open and that J(Qc) is the boundary of Kc. Hence we have

Proposition 8.2. Kc is closed and completely invariant. Also, J(Qc) is the
boundary of Kc.
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Recall from Example 1.13 that Qc has a fixed point at ∞ in the Riemann
sphere which satisfies Q′

c(∞) = 0. One may easily check that Q
′′
c (∞) �= 0

(see Exercise 3). From Remark 4 after Lemma 4.4 it follows that there
exists R > 0 and a neighborhood UR of ∞ on which there is an analytic
homeomorphism

φc : UR → DR = {z| |z| > R}
which conjugates Qc and the map Q0(z) = z2. That is, for z ∈ UR, we have

φc(Qc(z)) = (φc(z))2.

Via the map φc, we may assign “polar” coordinates on the open set UR.
For a fixed angle θ∗, consider a ray of the form arg z = θ∗, r > R. We
denote the preimage φ−1

c (reiθ∗) by γθ∗. The curve γθ∗ is called an external
ray. We also let ρr∗ = φ−1

c (|z| = r∗) for r∗ > R. Thus, r∗ and θ∗ give polar
coordinates on UR. See Fig. 8.1.

Fig. 8.1. Polar coordinates on UR.

Using a variant of our previous fundamental domain arguments, we now
extend the domain of definition of these polar coordinates. This may be
accomplished as follows. Suppose z ∈ C − UR satisfies Qc(z) ∈ UR. Then
|φc(Qc(z))| > R. Let us suppose that arg φc(Qc(z)) = θ and |φc(Q(z))| = r.
There are two points in C of the form ±w whose square is φc(Qc(z)). Let w
be such that w2 = φc(Qc(z)) and arg w = θ/2. Therefore, arg(−w) = θ/2+π.
In order to extend φc, we must define φc(z) to be one of +w or −w.

To make this choice, let us first suppose that c �∈ γθ. Then Q−1
c (γθ)

consists of two disjoint curves, one containing γθ/2 and the other containing
γπ+θ/2. Note that z belongs to one of these curves. We therefore set φc(z) =
w if z ∈ γθ/2, or φc(z) = −w if z ∈ γπ+θ/2. See Fig. 8.2.
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Fig. 8.2. Extending the conjugacy φc.

The only time this procedure breaks down occurs when c ∈ γθ, for then
the preimages Q−1

c (γθ) meet at 0. Therefore, if the orbit of 0 does not tend
to ∞, we do not encounter this problem and we may repeat this process
indefinitely. As a result, we find

Proposition 8.3. Suppose Qn
c (0)−→/ ∞. Let U1 = {z |Qn

c (z) → ∞}. Then
there is an analytic homeomorphism

φc : U1 → {z| |z| > 1}

such that φc(Qc(z)) = (φc(z))2. Moreover, J(Qc) is the boundary of U1.

Proof. Given our remarks above, the only item that needs proof is the
fact that any escaping orbit lies in U1. But if Qn

c (z) → ∞, then there
exists a smallest N for which QN

c (z) ∈ UR. Then we may apply the above
construction N times along the orbit of z to define φc(z). Since J(Qc) is
the common boundary of both Kc and the set of escaping orbits, the result
follows.

q.e.d.

Corollary 8.4. If Qn
c (0)−→/ ∞, then Kc is connected.

Proof. The complement of the simply connected region U1 is necessarily
connected.

q.e.d.
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Remarks.
1. The map φc from U1 to the exterior of the unit circle in the Riemann
sphere is called a uniformizing map: this is the map whose existence (up to
a normalization) is guaranteed by the Riemann Mapping Theorem.

2. As we extend φc, we may also extend the definition of the external rays
γθ. It is natural to ask whether these rays converge to a point in J(Qc)
as r → 1. In general, this is a delicate question whose answer is not fully
known.

In the case where Qn
c (0) → ∞, we may not continue the above procedure

forever: it breaks down precisely when 0 belongs to the preimage of some
ray γθ. In this case, let us assume that c ∈ γθ∗ and that |φc(c)| = r∗. The
number r∗ is called the escape rate of the critical value. The above procedure
works to define φc on the set U√

r∗ = {z | |φc(z)| >
√

r∗}. This set is depicted
in Fig. 8.3. Note that the two preimages of γθ∗ meet at 0.

Fig. 8.3.

Using this fact, we can now invoke the methods of §2 to show that J(Qc)
consists of infinitely many disconnected pieces. Let V0 and V1 denote the
two open sets which comprise the complement of U√

r∗. Note that V0 and
V1 are each mapped homeomorphically onto the complement of U r∗. Hence
J(Qc) ⊂ V0 ∪ V1 and, moreover, there is a Julia set in each of V0 and V1. As
always, we now take successive preimages of V0 and V1 finding that J(Qc)
thereby decomposes into infinitely many disjoint pieces. We leave it to the
reader to fill in the details. Therefore we have

Proposition 8.5. Suppose Qn
c (0) → ∞. Then J(Qc) consists of infinitely

many disjoint components.
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Remark. As we have seen so often before, it is true that J(Qc) is actually
totally disconnected and that Qc|J(Qc) is conjugate to the shift map.

Usually, it is impossible to give actual formulas for conjugacies such as
φc. However, in this case, we may indeed write down φc explicitly.

Proposition 8.6. Suppose |z| is sufficiently large. Then

φc(z) = lim
n→∞(Qn

c (z))1/2n
.

Proof. The only difficulty here is describing which 2n-th root to choose. To
do this, we may write

(Qn
c (z))1/2n

= z · (Qc(z))1/2

z
· (Q2

c(z))1/4

(Qc(z))1/2 · . . . · (Qn
c (z))1/2n

(Qn−1
c (z))1/2n−1 . (∗)

In this expression, for each k ≤ n, we may substitute

(Qk
c (z))1/2k

(Qk−1
c (z))1/2k−1 =

(
1 +

c

(Qk−1
c (z))2

)1/2k

.

We may therefore choose the principal branch of this root provided each of
z, Qc(z), . . . , Qk

c (z) are sufficiently large. Note that, using (∗), we clearly
have

φc(Qc(z)) = (φc(z))2

q.e.d.
We can now define the Mandelbrot set M.

Definition 8.7. The Mandelbrot set is the subset of the c-plane given by

M = {c |Qn
c (0)−→/ ∞}.

Equivalently, by Proposition 8.5 and Corollary 8.4,

M = {c | Kc is connected}.

To display M, we first observe that M is contained inside the disk of
radius 2 in the c-plane. This follows immediately from Proposition 2.8. From
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Fig. 8.4. The Mandelbrot set.

this result we see that if |c| > 2, then Qn
c (c) → ∞ and so c �∈ M. Also, if

|Qk
c (c)| > 2 for some k ≥ 0, it similarly follows that Qn

c (c) → ∞.
This then gives an algorithm for computing M: given c ∈ C, we simply

compute the first N points on the orbit of c under Qc. If, at any iteration
k < N , |Qk

c (c)| > 2, we stop the iteration because c �∈ M. If |Qi
c(c)| ≤ 2 for

all i ≤ N , we then assume that c ∈ M. In Fig. 8.4 we display in black the
set of points in M determined by this algorithm.

Despite appearances, the Mandelbrot set is a connected set; this is an
important recent result due to Douady and Hubbard. While we cannot
prove this here, let us give the basic idea of the proof. As we showed above, if
Qn

c (c) → ∞, then we may assign “polar” coordinates to the point φc(c) using
the conjugacy φc. Douady and Hubbard show that the function c → φc(c)
is an analytic homeomorphism taking C − M onto {z| |z| > 1}. That is,
this map is a uniformization of the exterior of M and so M is a connected
set. We emphasize that c �→ φc(c) is a map defined on the c-plane, not the
dynamical z-plane.

The Mandelbrot set is a wonderful object to explore using a computer.
Each small “decoration” on the Mandelbrot set differs from the others, as one
can see by recomputing and magnifying various portions of M. In plates 1-3,
we have examined various regions in and around the Mandelbrot set. In these
plates, colors represent the rate of escape to ∞: reds and oranges indicating
c-values whose orbit leaves the circle of radius 2 under few iterations, while
blues and violets indicate c-values whose orbits escape after only a large
number of iterations.
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Each of the bulbs or decorations in the Mandelbrot set has a specific
dynamical meaning. For example, the region inside the main cardioid in the
Mandelbrot set consists of all c-values for which Qc has an attracting fixed
point. See Exercise 6.1. Similarly, the circular region immediately to the left
of the cardioid consists of c-values for which Qc has an attracting orbit of
period 2. This was also proven in Exercise 6.1. This is true in general: each
of the bulbs in the Mandelbrot set consists of c-values for which Qc admits
an attracting periodic orbit of some period N . Figure 8.5 indicates a few of
these period N regions for low values of N .

Fig. 8.5. The periods of the bulbs in M.

One can understand these facts experimentally by using the orbit dia-
gram introduced in §1.17. Recall that the orbit diagram for a map of the real
line was simply a plot of the orbit of the critical point versus the parameter.
In §1.17 we computed the orbit diagram for the map Fµ(x) = µx(1−x). We
could equally well compute the orbit diagram for Qc, using the critical point
0. In Fig. 8.6, we have juxtaposed the orbit diagram for Qc and the Mandel-
brot set. The c-values which are real correspond to the horizontal “spine” of
M. Directly below this, we have plotted the corresponding critical orbit of
Qc. Note how the attracting fixed point region, the period-doubling regime,
and the period three “window” correspond exactly.

Exercises

1. Let Qc(z) = z2 + c. Prove that {z | Qn
c (z) → ∞} is an open set.
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Fig. 8.6. The orbit diagram of Qc and M.
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2. Prove that the boundary of Kc is J(Qc).

3. Prove that Q′′
c (∞) �= 0.

§3.9 AN EXAMPLE: THE EXPONENTIAL FUNCTION

Entire transcendental functions are, in many ways, similar to polyno-
mials. There are, however, several major differences. Perhaps the most
important difference is the fact that ∞ is no longer an attracting fixed point.
Unlike polynomials, entire functions cannot even be extended continuously
to ∞ to give a map on the Riemann sphere. Indeed, ∞ is what is known
as an essential singularity for the map, and the remarkable theorem of Pi-
card guarantees that the map assumes all but one value infinitely often in
every neighborhood of an essential singularity. Thus the dynamics of an en-
tire map are extremely complicated near ∞. We will illustrate this point
in this section by considering a simple but important family of maps, the
complex exponential maps λez. Although these maps are relatively simple,
they nevertheless illustrate a number of phenomena common to many entire
functions. For example, we will prove below that the Julia set of these maps
may explode as the parameter λ is varied from a nowhere dense subset of C
to the entire plane!

Let us denote the family of maps λ exp(z) by Eλ. Here λ is a real pa-
rameter. The dynamics of Eλ on the real line are easy to understand. Recall
from §1.12 that the graph of Eλ assumes three different forms depending
upon whether λ > 1/e, λ = 1/e, or 0 < λ < 1/e. See Fig. 9.1. It follows
that, if λ > 1/e, then En

λ(x) → ∞ for all x, while if λ < 1/e, there are two
fixed points in R, one attracting and one repelling.

This, of course, is an example of the saddle node bifurcation. We will
show below that this bifurcation is actually much more complicated when
regarded globally; the explosion in the Julia set of Eλ occurs as λ passes
through 1/e.

We first recall some of the elementary properties of the exponential.
For simplicity, we will write E(z) for the usual exponential ez. We have
E(x + iy) = exeiy = ex cos y + iex sin y. Consequently, E maps vertical lines
x = c to circles centered at 0 with radius ec and horizontal lines y = c to
rays θ = c. In particular, horizontal lines of the form y = (2k+1)π for k ∈ Z
are mapped to the negative real axis, while lines of the form y = 2kπ are
mapped to the positive real axis. See Fig. 9.2. Finally, E is 2πi periodic and
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Fig. 9.1. The graphs of Eλ(x) = λ exp(x) when
a. λ > 1

e , b. λ = 1
e , and c. λ < 1

e .

has no critical points, but 0 is a singular “value” in the sense that it is an
omitted value. The reader may easily check that any neighborhood of ∞ is
mapped by E onto C − {0} infinitely often. See Exercise 1.

We now turn to a description of the Julia set of E(z). We remark that all
of the properties of the Julia set of a polynomial go over to the exponential
map with one exception: the Julia set may have interior (see Corollary 5.10).
In fact, in 1981, Misiurewicz showed that J(E) = C, answering a sixty-year-
old question of Fatou. We present his proof of this fact below.

The following proposition highlights one of the differences between E(z)
and polynomials: points which tend to ∞ under iteration of E need not be
in the stable set.

Proposition 9.1. The real line is contained in J(E).

Proof. Let S denote the strip |Im (z)| ≤ π/3. If z = x + iy ∈ S, then since
|ex cos y| ≥ ex/2 > x, it follows that E(z) lies to the right of z. The last
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Fig. 9.2. The mapping E(z) = exp(z).

inequality follows from Fig. 9.1, since 1
2 > 1

e . In particular, if Ei(z) ∈ S for
all i, we have ReEi(z) → ∞.

If z ∈ S with Re (z) > 1 and Im (z) �= 0, then we also have

|ex sin y| > ex(
2
π

|y|) > |y|.

Consequently, if z ∈ S but z /∈ R, and if Re z > 1, then |Im (Ei(z))| must
grow as i increases. Hence there exists j > 0 for which Ej(z) �∈ S. Thus all
points in S which do not lie in R must eventually leave S.

Now let U be any neighborhood of x ∈ R. Recall that Ej(x) → ∞. By
the above remarks, there is N > 0 such that, for each j > N, Ej(U) intersects
both R and the line y = π/3 at points with real part > 1. Consequently,
Ej+1(U) meets both R and y = π, since y = π/3 is mapped to the ray
θ = π/3. Hence Ej+2(U) meets the negative real axis, and so a portion of U
is mapped by Ej+3 inside the unit disk. Thus, for sufficiently large j, there
are points z1 and z2 in U for which Ej(z1) lies in the unit disk and for which
|Ej(z2)| is arbitrarily large. It follows that {En} is not normal in U , and so
x ∈ J(E).

q.e.d.

Thus to show that J(E) = C, it suffices to show that inverse images of
the real line are dense in C. For this, we need several lemmas.

Lemma 9.2. |Im (En(z))| ≤ |(En)′(z)|.
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Proof. If z = x + iy, we have

|Im (E(z))| = ex| sin y|
≤ ex|y|
= |E′(z)||Im (z)|

so that
|Im (E(z))|

|Im (z)| ≤ |E′(z)|

if z �∈ R. More generally, if En(z) �∈ R, we may apply this inequality
repeatedly to find

|Im (En(z))|
|Im (E(z))| =

n−1∏
i=1

|Im E(Ei(z))|
|Im (Ei(z))|

≤
n−1∏
i=1

|E′(Ei(z))|.

Since |Im (E(z))| ≤ |E(z)| = |E′(z)| we may write

|Im (En(z))| ≤
n−1∏
i=0

|E′(Ei(z))|

= |(En)′(z)|.

q.e.d.
The proof of Proposition 9.1 shows that most points must leave the strip

S under iteration. The next lemma shows, however, that most points must
eventually return.

Lemma 9.3. Let U be an open connected set. Then only finitely many of
the En(U) can be disjoint from S.

Proof. Let us assume that infinitely many of the images of U are disjoint
from S. If there is an n for which En is not a homeomorphism taking U onto
its image, then there exist z1, z2 ∈ U , z1 �= z2, for which En(z1) = En(z2).
Consequently, there is a j for which Ej(z1) = Ej(z2) + 2kπi for some k ∈
Z − {0}. But then Ej(U) must meet a horizontal line of the form y = 2mπ
for m ∈ Z and so Ej+1(U) meets R. Hence Ej+α(U) meets R for all α > 0
and only finitely many of the images of U can be disjoint from S. We thus
conclude that each En must be a homeomorphism on U .



§3.9 AN EXAMPLE: THE EXPONENTIAL FUNCTION 323

Now suppose there is a sequence nj such that for each j, Enj(U)∩S = φ.
By the previous lemma, |(Enj)′(z)| ≥ (π/3)nj for each j and all z ∈ U . It
follows that, if U contains a disk of radius δ > 0, then Enj(U) contains a
disk of radius δ(π/3)nj . See Exercise 2. Hence for j large enough, Enj(U)
must meet a line of the form y = 2π and again we are done.

q.e.d.

Lemma 9.4. Let V be an open connected set for which infinitely many of
its images are contained in the half plane H = {z |Re (z) > 4}. Then there
exists n > 0 for which En(V ) ∩ R �= ∅.

Proof. Let W denote the set {z | |Im (z)| ≤ 2π and |Im (E(z))| ≤ 2π}. If a
connected set A satisfies A∩W = ∅, then either A∩S or E(A)∩S is empty.
Consequently, by the previous lemma, only finitely many images of V in H
can be disjoint from W . Hence almost all images of V are contained in W .

Now consider the boundary |y| = π
3 of S in H. If z lies on this boundary,

then
|Im (E(z))| ≥ e4 sin

(
π

3

)
> 2π.

Therefore, the boundary of S in H does not lie in W . Thus every connected
set in W ∩ H is either contained in S or disjoint from S. Now the image
of S ∩ H is contained in H. Since infinitely many of the images of V are
contained in W ∩ H, and since for each z ∈ C − R, there exists n ≥ 0 such
that En(z) �∈ S (see the proof of Proposition 9.1), it therefore follows that
infinitely many of them must be disjoint from S. This contradicts Lemma
9.3.

q.e.d.
We can now prove

Theorem 9.5. J(E) = C.

Proof. By Proposition 9.1, it suffices to show that any open set in C contains
some preimage of R. To that end, let U be open and connected and suppose
En(U) ∩ R = ∅ for each n. By Montel’s Theorem, {En} is a normal family
on U .

Let D denote the disk of radius e4 about 0. Note that E(H) is the
complement of D. Hence, by Lemma 9.4, it follows that infinitely many of
the images of U meet D.

Now let F denote the limit function of some subsequence of the En. By
the above, F (U) ∩ D �= φ. Choose a point z0 ∈ F (U) ∩ D. If z0 ∈ R, then
there exists k > 0 such that Ek(U)∩R �= φ and we are done. Thus we assume
z0 �∈ R. As we observed in Proposition 9.1, there exists k > 0 for which
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Ek(z0) �∈ S. Therefore there exists w ∈ U and another subsequence of the
En which converges to a map F1 which satisfies F1(w) �∈ S. But then there
is an open neighborhood V of w and infinitely many images En(V ) which
do not meet S. This contradicts Lemma 9.3 and establishes the Theorem.

q.e.d.

Remarks.

1. We have actually shown that the family {En} is not normal at any point
in C. To prove that repelling periodic points are dense as well, we may argue
as follows. It is easy to check that E has a repelling fixed point; in fact it has
infinitely many (see Exercise 3). Then the arguments of §3.5 may be used to
produce a repelling periodic point near any point in C.

2. It is also true that J(Eλ) = C for λ > 1/e. One need only modify the
sets S and H to prove this. We omit the details.

Now we turn to the bifurcation which occurs at λ = 1/e. By the above
remarks, J(Eλ) = C for all λ > 1/e. For λ < 1/e, Eλ has two fixed points
in R: an attracting fixed point at q and a repelling fixed point at p. See
Fig. 9.1. Note that q < 1 < p and that Eλ(1) < 1. Consider the vertical line
x = 1. Eλ maps this line to a circle of radius λe < 1 about 0. In particular,
the entire left half plane Re (z) < 1 is mapped inside this circle. Since
Re (z) < 1 is simply connected, and q is a fixed point in this set, it follows
from the Schwarz lemma (see Corollary 1.11) that all points in Re (z) < 1
tend to q under iteration of Eλ. Hence there are no repelling periodic points
in Re (z) < 1 and it follows that the Julia set of Eλ lies entirely to the right
of the line x = 1. Thus, as λ increases through 1/e, the Julia set explodes
to cover the entire plane. Obviously, this saddle node bifurcation has global
ramifications. This also shows that the Julia set of a complex analytic map
need not vary continuously.

A natural question to ask concerns the nature of J(Eλ) for 0 < λ < 1/e.
By the above results, J(Eλ) is contained in the half-plane Re (z) ≥ 1. To
describe this set, we again invoke symbolic dynamics. For any integer N ,
we first construct a sequence of 2N + 1 rectangles Rj which we index by
j = −N, . . . , N . Each of these rectangles has sides parallel to the x- and y-
axes. Their left boundaries lie on x = 1 while their horizontal boundaries lie
on the lines y = (2j +1)π and y = (2j −1)π. The right boundaries lie on the
vertical line x = c where c depends on N and is chosen so that λec >

√
2c.

This condition guarantees that Eλ maps each Rj onto the annular region
λe < 1 < |z| < λec which covers each of the Rk. See Fig. 9.3. This is a
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familiar situation. Let

RN =
N⋃

j=−N

Rj

and define ΛN = {z ∈ RN |Ei
λ(z) ∈ RN for all i}. The following proposition

is proved exactly as in preceding sections and hence is left as an exercise.

Fig. 9.3.

Proposition 9.6. ΛN is an invariant Cantor set on which Eλ is topologi-
cally conjugate to the shift on 2N + 1 symbols. Moreover, if z ∈ ΛN , then
|(E′

λ)(z)| > 1.

The Julia set of Eλ is actually more complicated than the above would
suggest. The fixed point p is obviously in J(Eλ), and, moreover, using Propo-
sition 9.1, the entire interval [p,∞) is also in J . The open interval (p,∞)
consists of points which tend to ∞ under iteration of Eλ and hence, by the
argument in the proof of Proposition 9.1, these points indeed lie in J(Eλ).
But none of these points are captured by the construction of ΛN . We call
this curve the tail associated to p. It turns out that each point in ΛN has a
similar tail attached. Let us be more specific.

Proposition 9.7. Let w ∈ ΛN . There is a continuous curve ψw : [0, ∞) →
C which satisfies

1. ψw(t) is one-to-one.
2. ψw(0) = w.
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3. If t �= 0, En
λ(ψw(t)) → ∞ as n → ∞.

4. ψw(t) ∈ J(Eλ).

We simply sketch the construction of ψw, leaving most of the details to
the reader. Since w ∈ ΛN , there is a sequence s0s1s2, . . . of integers which
gives the itinerary of w in the Rj . Let Sj denote the semi-infinite strip
{z|Re (z) ≥ 1 and (2j − 1)π ≤ Im (z) ≤ (2j + 1)π}. ψw is then defined as
{z | En

λ(z) ∈ Ssn for all n}, i.e., ψw contains all points which share the same
itinerary as w in the Sj . One may check that, if the right-hand boundary of
Rj lies in x = c and if c is large enough, then there is a unique point in this
interval which lies in ψw. See Exercise 6.

In fact, one can show that the set of points whose orbits lie for all time
in the above strips is homeomorphic to the Cartesian product ΛN × [0, ∞),
i.e., that the tails vary continuously with the points in ΛN . Such a set is
called a Cantor bouquet . See Exercise 7.

Exercises

1. Prove that Eλ(z) = λ exp(z) assumes every value but 0 infinitely often in
every neighborhood of ∞. This is a special case of the great Picard Theorem.
2. Suppose B is a disk of radius δ and F is an analytic homeomorphism
which satisfies |F ′(z)| > µ for each z ∈ B. Show that F (B) contains a disk
of radius µδ.
3. Let Rk denote the open strip (2k − 1)π < Im (z) < (2k + 1)π. Prove
that each Eλ has a repelling periodic point in Rk if k �= 0.
4. Prove that when λ = 1/e, there are no repelling periodic points in the
half-plane Re (z) < 1.
5. Prove Proposition 9.6.
6. Let 0 < λ < 1/e. Let w be a point in the Cantor set Λn ⊂ J(Eλ) as
described in Proposition 9.6. Prove that w has a tail attached as described
in Proposition 9.7.
7. Let Γn = {z | Re (z) ≥ 1 and |Im (z)| ≤ (2n + 1)π}. Prove that if
0 < λ < 1/e, then {z | Ek

λ(z) ∈ Γn for all k} is a Cantor bouquet, i.e., is
homeomorphic to Λn × [0, ∞).

The following three exercises show that entire functions may differ from
polynomials in other respects.
8. Let F (z) = z + ez. Prove that F has no fixed points.
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9. Let F (z) = z − (sin z)eiz. Prove that F has infinitely many attracting
fixed points.
10. Let F (z) = z + 1 + e−z. Prove that if Re (z) > 0, then F n(z) → ∞, so
that entire functions may have partial basins of attraction at ∞. Describe
J(F ).

The following four exercises deal with the structure of the Julia set of
the entire function Sλ(z) = λ sin(z).
11. Prove that the imaginary axis is invariant under Sλ. If |λ| ≥ 1, prove
that it is contained in J(Sλ).
12. Describe the bifurcation that occurs for λ = 1 in the family Sλ.
13. Let |λ| < 1. For −N ≤ j ≤ N and ε small, let Wj denote the strips
given by Im (z) > ε and (2j − 1)π ≤ Re (z) ≤ (2j + 1)π. Show that J(Sλ)
contains an invariant Cantor set in the Wj on which Sλ is conjugate to the
shift on 2N + 1 symbols.
14. Prove that Sλ(z) assumes every value in c infinitely often in every
neighborhood of ∞.
15. Describe the Julia set of λ exp(zn) for λ small.

FOR FURTHER READING:

Most of the treatments of complex dynamics require a solid background
in complex analysis and a high degree of mathematical sophistication. Here
are some texts that delve into different portions of the material presented in
this chapter.

Milnor, J. Dynamics in One Complex Variable. Wiesbaden: Vieweg, 1999.

Steinmetz, N. Rational Iteration. Berlin: de Gruyter, 1993.

Beardon, A. Iteration of Rational Functions. New York: Springer-Verlag,
1991.

McMullen, C. T. Complex Dynamics and Renormalization. Princeton Uni-
versity Press, 1994.

Further details on convergence questions which arise near an indifferent pe-
riodic point may be found in:

Siegel, C.L. and Moser, J. Lectures on Celestial Mechanics. Springer-Verlag,
New York, 1971.
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Julia sets are also examples of fractals, and the computer graphics work of
Mandelbrot has done a lot to bring the subject of complex dynamics back
into vogue. Some of this work is contained in:

Mandelbrot, B. The Fractal Geometry of Nature. Freeman, San Francisco,
1982.

Computer graphics images of Julia sets and the Mandelbrot set are extremely
beautiful. For background on the algorithms necessary to produce these
images, see the following books.

Peitgen, H.-O. and Richter, P. The Beauty of Fractals. Springer-Verlag, New
York, 1986.

The Science of Fractal Images. Peitgen, H.-O. and Saupe, D., eds. Springer-
Verlag, New York, 1988.

A book that presents the mathematics and the computer algorithms for the
material in this chapter at a level accessible to students with a good high
school mathematics background is:

Devaney, R.L. Chaos, Fractals, and Dynamics: Computer Experiments in
Mathematics. Addison-Wesley, Menlo Park CA, 1989.

There are a number of excellent textbooks available for background work in
complex analysis. Among them are:

Ahlfors, L.V. Complex Analysis. McGraw-Hill Book Co., New York, 1979.

Conway, J.B. Functions of One Complex Variable. Springer-Verlag, New
York, 1978.

Finally, there is no substitute for going back to the old masters. It is remark-
able to see how far Fatou and Julia were able to push the theory of complex
analytic dynamics without having access to a computer!

Julia, G. Mémoire sur l’itération des fonctions rationelles. J. Math. 8 (1918),
47-245.

Fatou, P. Sur l’itération des fonctions transcendantes entières. Acta Math.
47 (1926), 337-370.
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Color Plates

The color plates in this book were all produced using variants of the fol-
lowing algorithm. First select a grid in a rectangular region in the complex
plane. Then iterate the desired function up to MAXITER times for each
point in the grid. If the orbit of a given point ever leaves a certain predeter-
mined region, then stop the iteration and color the initial point on the orbit
with a color that indicates the escape iteration. If the orbit does not escape
before MAXITER iterations, then leave the original point black. In general,
shades of red or orange indicate points whose orbits escape quickly, shades
of yellow or green indicate points whose orbits take a moderate number of
iterations to escape, and shades of blue or violet indicate points whose orbits
take a long time to escape.

For pictures of quadratic Julia sets, a point escapes if its orbit ever leaves
the circle of radius 2 centered at the origin. See §3.2, Exercise 1. For expo-
nential functions, a point escapes if its orbit tends to infinity with increasing
real part, so we use Re z > 50 as the test for escape. For complex sines
and cosines, the test is |Im z| > 50. For the Mandelbrot set, the test is
|Qn

c (c)| > 2. Recall that, from §3.8, the Mandelbrot set is a picture in the
c-plane.



330 COMPLEX ANALYTIC DYNAMICS

The plates were generated on a SUN 3/160 workstation using a program
written by Paul Blanchard, Scott Sutherland, and Gert Vegter. The images
were photographed using a Matrix Instruments camera.

The following gives detailed information concerning each image, includ-
ing the maximum number of iterations (MAXITER) and the window in the
complex plane (lower left and upper right coordinates.)

Plate 1: The Dragon.
The Julia set of z2 + .360284 + .100376i
MAXITER: 300
Window: −1.8 − 1.8i, 1.8 + 1.8i

Plate 2: Magnification of Plate 1.
MAXITER: 400
Window: −0.891858 + 0.277244i, −0.0167015 + 1.16576i

Plate 3: Douady’s Rabbit.
The Julia set of z2 + −.122 + .745i
MAXITER: 100
Window: −1.5 − 1.4i, 1.5 + 1.4i

Plate 4: Magnification of Plate 3.
MAXITER: 100
Window: −1.31989 + 0.372166i, −0.769191 + 0.935953i

Plate 5: The Mandelbrot set.
MAXITER: 50
Window: −2.1 − 1.3i, .9 + 1.3i

Plate 6: Decorations on the Mandelbrot set.
MAXITER: 200
Window: −1.764 + .01i,−1.7506 + .022i

Plate 7: More decorations on the Mandelbrot set.
MAXITER: 125
Window: 0.148434 + 0.422892i, 0.46785 + .74241i

Plate 8: Small copies of the Mandelbrot set.
MAXITER: 500
Window: −1.613 − .00002i,−1.61296 + .00002i

Plate 9:
MAXITER: 175
Window: −1.19598 + 0.292302i, −1.17621 + 0.312073i
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Plate 10:
MAXITER: 175
Window: −1.26333 + 0.372908i, −1.24714 + 0.390228i

Plate 11: “Elephants.”
MAXITER: 125
Window: −0.866179 + 0.109639i, −0.672025 + 0.26i

Plate 12: “Seahorses:” magnification of Plate 11.
MAXITER: 200
Window: −0.750254 + 0.190509i, −0.711342 + 0.229115i

Plate 13: Magnification of Plate 12.
MAXITER: 250
Window: −0.742537 + 0.201319i, −0.729783 + 0.214648i

Plate 14: “Spiders:” magnification of Plate 13.
MAXITER: 500
Window: −0.737664 + 0.208057i, −0.737183 + 0.208489i

Plate 15: Julia set of .367ez.
MAXITER: 100
Window: −1 − 2.5i, 4 + 2.5i

Plate 16: Julia set of .369ez.
MAXITER: 500
Window: −1 − 2.5i, 4 + 2.5i

Plate 17: Julia set of (1 + .2i) sin z.
MAXITER: 35
Window: −3 − 3i, 3 + 3i
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Index

Adding machine, 137
Admissible sequence, 144
Analytic map, 261
Anosov map, 190
Area preserving map, 255
Asymptotic, 19, 185
Attracting fixed point, 25, 215, 276
Attractor, 25, 201

Backward asymptotic, 19, 185
Baker map, 39, 52
Basin of attraction, 280
Bifurcation, 28, 80

Homoclinic, 126
Saddle node, 81, 88, 310
Period-doubling, 82, 90, 310

Bifurcation diagram, 82

Block, L., 63
Branched manifold, 209
Brouwer Fixed Point Theorem, 14
Bump function, 8, 17

C1-function, 8
Cr-distance, 54
Canonical family, 109
Cantor bouquet, 326
Cantor function, 111
Cantor Middle-Thirds set, 36, 138
Cantor Middle-Fifths set, 39
Cantor set, 37, 187, 270
Cartesian product, 171
Chain recurrence, 232
Chain Rule, 10
Chaos, 50, 268
Closed set, 14
Closing Lemma, 116
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Completely invariant, 269
Composition, 10
Cone, 238
Cone field, 238
Continued fraction, 307
Continuous dynamical system, 3
Contraction Mapping Theorem, 172
Core, 238
Cover, 61
Covering map, 102
Critical point, 10

DA map, 212
Degenerate critical point, 19
Degenerate homoclinic orbit, 124
Dendrite, 294
Denjoy map, 108, 112
Dense orbit, 42
Dense set, 15
Devil’s staircase, 110
Diffeomorphism, 9, 170
Discrepancy, 142
Discrete dynamical system, 2
Douady, A., 260, 316
Double, 67, 137
Dynamical system, 2

Eigenvalue, 164
Eigenvector, 164
Elliptic point, 255
Elliptic transformation, 267
Escape rate, 314
Eventually periodic point, 18
Exceptional point, 274
Expanding attractor, 208
Expansive, 50
External ray, 312

Fatou, P., 260

Fibonacci sequence, 101
Filled in Julia set, 311
First return map, 75
Fixed point, 18
Foliation, 191
Forward asymptotic, 19, 185
Fractal, 37
Full family, 153
Fundamental domain, 55

Genealogy, 154
Gradient like, 231
Graph transform, 226
Graphical analysis, 20, 32
Guckenheimer, J., 63

Hartman’s Theorem, 58
Hénon attractor, 211, 213
Hénon map, 170, 251
Heteroclinic point, 122, 188, 233
Homeomorphism, 9
Homoclinic bifurcation, 125, 257
Homoclinic point, 122, 194, 233
Homoclinic orbit, 123, 188
Hopf bifurcation, 242–244
Hopf Bifurcation Theorem, 249
Horizontal curve, 224
Horizontal line field, 228
Hyperbolic, 24–28, 214

Fixed point, 24, 215
Periodic point, 24, 215
Set, 38, 187, 236
Toral automorphism, 191
Transformation, 267

Hubbard, J., 260, 316

Implicit Function Theorem, 10, 171
Indifferent periodic point, 276
Injective, 9
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Integral, 181
Intermediate Value Theorem, 11
Inverse Function Theorem, 172
Inverse limit, 206
Involution, 188, 255
Irrational rotation, 21
Iteration, 2
Itinerary, 44

Jacobi’s Theorem, 21
Jordan form, 169
Julia, G., 260
Julia set, 269

Koenigs, 276
Kneading theory, 140–143
Kneading sequence, 141
Kupka-Smale Theorem, 117

Liapounov function, 176
Lift, 102
Limit point, 14
Linear automorphism, 230
Linear map, 161
Linear structural stability, 59
Local stable manifold, 217
Local stable set, 26
Local unstable manifold, 217
Local unstable set, 122
Lozi attractor, 214

Mandelbrot, B. 260
Mandelbrot set, 295, 299, 311–317
Mapping, 17
Markov partition, 196
Matrix, 161
Matrix representation, 163
Maximum Principle, 263
Mean Value Theorem, 10

Metric, 40
Minimal set, 136
Misiurewicz, M., 63, 137, 320
Mobius transformation, 267
Montel’s Theorem, 274
Morse-Smale Map 59, 114, 235
Moser, J., 276
Moser Twist Theorem, 257

Neutral periodic point, 300
Non-degenerate critical point, 19
Non-degenerate homoclinic orbit, 124
Non-wandering, 47
Normal family, 272
Normal form, 245

One-to-one, 8
Onto, 9
Open set, 15
Orbit, 17

Backward orbit, 17
Forward orbit, 17
Recurrent orbit, 47, 115

Orbit diagram, 134
Orientation preserving, 102

Palis, J., 235
Parabolic transformation, 267
Perfect set, 37
Period-doubling bifurcation, 82, 90,
130, 240, 310
Periodic point, 18

Attracting, 25
Indifferent, 276, 300
Neutral, 300
Repelling, 26
Weakly attracting, 28
Weakly repelling, 27

Petal, 302
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Phase portrait, 20
Plykin attractor, 209
Pole, 266

Quadratic map, 31–39, 268–272

Rational rotation, 21
Recurrent point, 47, 116, 232
Regular sequence, 138
Renormalization, 133, 146
Repelling periodic point, 26, 215
Repellor, 26
Reversible, 255
Riemann sphere, 265
Rotation number, 103

Saddle node bifurcation, 80, 88, 240,
310

Sarkovskii order, 62, 256
Sarkovskii’s Theorem, 60, 99
Schröder functional equation, 277
Schwarz Lemma, 264
Schwarzian derivative, 68–79, 268
Sector bundle, 223
Semi-conjugate, 51
Sensitive dependence, 49
Sequence space, 40, 184
Shift map, 40, 184, 270
Siegel, C.L., 276, 306
Simply connected, 262
Sink, 25, 215
Smale, S., 93
Smale Horseshoe map, 180
Smooth function, 8
Snap-back repellor, 122
Solenoid, 201
Source, 26, 215
Stable

Manifold, 218, 237

Set, 19, 185, 269
Subspace, 177

Standard family, 109
Standard form, 167
Steiner circle, 268
Strange attractor, 211, 258
Structural stability, 53
Subshift of finite type, 94, 199
Sullivan, D., 260
Superattracting, 276
Surjective, 9
Symbolic dynamics, 39–42, 184, 256

Tangent bifurcation, 81
Tchebycheff polynomial, 52
Tent map, 38, 52
Topological conjugacy, 47
Topological transitivity, 42, 49
Torus, 171, 190
Totally disconnected, 37
Trace, 99
Transition matrix, 94
Transition family, 153
Transitive attractor, 204
Transversality, 233
Transverse homoclinic point, 194
Trapping region, 202

Uniformizing map, 314
Unimodal map, 130, 140
Unstable

Manifold, 218, 237
Set, 19, 186
Subspace, 177

Wandering interval, 80, 109
Weierstrass ℘ function, 296
Williams, R. 93, 208

Young, L.-S., 63
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