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Abstract The Mathematical Intelligencer recently published a note by Y. Sergeyev that

challenges both mathematics and intelligence. We examine Sergeyev’s claims concerning his

purported Infinity computer. We compare his grossone system with the classical Levi-Civita

fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic

issues inevitably arising in any genuine computer implementation. We show that Sergeyev’s

grossone system is unnecessary and vague, and that whatever consistent subsystem could be

salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who

published an article on a grossone, places it squarely outside the historical panorama of ideas

dealing with infinity and infinitesimals.

1 Grossone Olympics

In the summer of ’15, some of us were approached by an editor of The Mathematical

Intelligencer (TMI) with a request to respond to a piece of what they felt was pseudo-

science, published without their knowledge in TMI. As noted in (Dauben et al.

2015, p. 393), I. Grattan-Guinness argued that ‘‘the demarcation between science and
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pseudo-science is not clearly drawn’’. While agreeing with Grattan-Guinness, in the pre-

sent article we argue that in some cases the demarcation is drawn clearer than in others.

Yaroslav Sergeyev has developed a positional system for infinite numbers in numerous

articles over the past decade. By 2015, MathSciNet listed 19 such articles, starting with

(Sergeyev 2003). His ‘‘Olympic Medal’’ note (Sergeyev 2015a) in TMI purports to be an

application of his grossone system to ranking countries lexicographically according to the

number of gold, silver, and bronze medals they earned in the olympics. Sergeyev’s system

is closely related to the field of rational functions in one variable and to the classical Levi-

Civita field, with a non-Archimedean structure provided by a suitable lexicographic

ordering (a more detailed comparison with the Levi-Civita fields appears in Sect. 4.1).

Sergeyev appears to be making claims of significant progress in the field of non-

standard models. The reaction of the experts to Sergeyev’s claims has been lukewarm. Joel

David Hamkins, a leading authority on mathematical logic and foundations, reacted as

follows to Sergeyev’s claims: ‘‘It seems to me that there is very little that is new in this

topic, and basically nothing to support the grand claims being made about it’’ (Hamkins

2015). In this text, we will analyze Sergeyev’s claims in more detail.

Shamseddine’s group has used Levi-Civita fields to develop computer implementations

exploiting infinite numbers (see Sect. 4.2), without engaging in the sort of rhetorical flou artis-

tique that envelopes a typical Sergeyev performance. Pure and applied mathematicians may

sometimes use different standards of rigor but Sergeyev’s case is a rather different problem.

Nonstandard models of arithmetic were developed as early as 1933 by Skolem using

purely constructive methods (in particular not relying on any version of the axiom of

choice); see e.g., Skolem (1933, 1934, 1955), and Kanovei et al. (2013), Sect. 3.2.

Conservative extensions of the Peano axioms (PA) were studied in Kreisel (1969) and

Henson et al. (1984). Subsequently Henson and Keisler (1986) described both a family of

nonstandard versions of PA itself, and n-th order PA for different values of n, that are

conservative extensions of PA itself and respectively n-th order PA (see Proposition 2.3

there), and also nonstandard versions containing additional stronger saturation axioms, that

are not conservative extensions (see Theorem 3.2 there). All of these theories are con-

servative with respect to ZFC, as is IST (see Sect. 6).

Avigad (2005) showed how to use weak theories of nonstandard arithmetic to treat

fragments of calculus and analysis. If (as apparently claimed in Lolli 2015) what Sergeyev

is attempting to do is develop such nonstandard models, he is certainly doing it without

acknowledging prior work in the field.

2 Transfering the Sine Function

A few years ago, one of the authors asked Sergeyev through email what the sine of his

grossone was, and he replied that it is

sinðgrossoneÞ:

The author in question did not have the heart to ask Sergeyev what

sin2ðgrossoneÞ þ cos2ðgrossoneÞ

is, and how exactly his ‘‘infinity computer’’ can know it other than being told case-by-case

about every possible identity in mathematics. The point is that neither the field of rational
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functions nor Sergeyev’s grossone system possesses a transfer principle (see below) or any

equivalent procedure.

In his list of areas where his ideas are claimed to be potentially fruitful, Sergeyev

mentions differential equations. Surely for this he will need to know that the sine function

is defined on the extended system with its usual properties. This is what makes the question

about sinðgrossoneÞ crucial.

The transfer principle is a type of theorem that, depending on the context, asserts that

rules, laws or procedures valid for a certain number system, still apply (i.e., are ‘‘trans-

fered’’) to an extended number system. Thus, the familiar extension Q � R preserves the

property of being an ordered field. To give a negative example, the extension

R � R [ f�1g

of the real numbers to the so-called extended reals does not preserve such a property. The

hyperreal extension

R � �R

preserves all first-order properties, including the trigonometric identity sin2 xþ cos2 x ¼ 1

(valid for all hyperreal x, including infinitesimal and infinite values of x 2 �R). For a more

detailed discussion, see the textbook Elementary Calculus (Keisler 1986).

The revolutionary idea that there does exist a system, sometimes called hyperreal

numbers, satisfying such a transfer principle is due to the combined effort of Hewitt

(1948), Łoś (1955), and Robinson (1961), and has roots in Leibniz’s Law of continuity and

his distinction between assignable and inassignable numbers; see Katz and Sherry (2012,

2013). We will provide an explanation of the extension R � �R in Sect. 5.

Sergeyev sometimes grudgingly acknowledges the debt to Robinson. However, in many

publications Sergeyev unfortunately presents the idea as his own, as noted by Vladik

Kreinovich in his MathSciNet review of Sergeyev’s book (Kreinovich 2003). Peter W.

Day’s review of Sergeyev’s article at Day (2006) mentions the connection to the transfer

principle, lacking in Sergeyev’s system. Additional critical reviews are Zlatoš (2009) and

Kutateladze (2011).

Sergeyev himself introduces his symbol for infinity in the following terms:

A new infinite unit of measure has been introduced for this purpose as the number of

elements of the set N of natural numbers. It is expressed by the numeral � called

grossone. It is necessary to note immediately that � is neither Cantor’s @0 nor x.

Particularly, it has both cardinal and ordinal properties as usual finite natural num-

bers (Iudin et al. 2012, p. 8101).

It is easy to detect serious logical problems with such a definition. Sergeyev’s claim that

his � has both cardinal and ordinal properties is a purely declamative pronouncement. A

reader might have expected such a claim in a refereed mathematical periodical to be

justified by a clever definition, but it is not. As it stands, Sergeyev’s claim is merely a

thinly veiled admission of an inconsistency, couched in an attempt to dress up a bug to look

like a feature. Similarly, Sergeyev’s attempted definition of � as somehow ‘‘the number of

elements of the set N’’ contradicts other passages where � is included as a member of N,

resulting in an embarrassing circularity.1

1 See further on circularity of Sergeyev’s definitions in footnote 5.
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The point we wish to emphasize is that the plausibility that such a scheme might

actually work after being sufficiently cleaned-up of superfluous pathos2 (including

inconsistencies), is entirely due to Robinson’s insights implementing Leibniz’s ideas about

the distinction between assignable and inassignable numbers, on the one hand, and

implementing Leibniz’s law of continuity as the transfer principle, on the other.

In his writings, Sergeyev introduces his grossone, announces that it is infinite, and

blithely assumes that anything algebraic, or even from analysis, that can be done with

ordinary numbers can be done when the grossone is adjoined. Such mathematical asser-

tions require proof, which are lacking in the analyzed note.

3 Debt to Robinson

The tendency to give insufficient credit to Robinson is clearly on display in the ‘‘Olympic

medal’’ as the reference to Robinson’s theory is concealed in an obscure phrase in such a

way that an uninformed reader will be unable to gauge its significance.

For the benefit of such a reader, we provide the following clarification. As far as

providing a lexicographic ordering for the olympic medals are concerned, it would be

sufficient to take the grossone to be equal to a number p greater than the total of all the

medals attributed at the olympics, for example p equal a million, and work with number

representation in base p. Then obviously p will satisfy all the usual rules governing finite

numbers, because p itself is a finite number. However, Sergeyev’s system is obviously not

tailor-made for the games. Rather, the alleged significance of Sergeyev’s system is its

purported applicability to a broad range of scientific problems, without any apriori limi-

tation on the size of the sample. For this reason he wishes to use an infinite grossone value

for p. In fact, the ordinary rational numbers suffice for this purpose, as we explain in

Sect. 7.

This is where his (pseudo)mathematical claims become questionable. His framework

presupposes a number system which properly extends the usual one, yet obeys the usual

laws, i.e., a transfer principle (see Sect. 2). But Sergeyev’s system does not obey a transfer

principle in any mathematically identifiable form, as Sergeyev appears to acknowledge in

his sinðgrossoneÞ comment. The grossone calculator will be able to compute values nec-

essary for scientific work only to the extent that one or another version of the transfer

principle is successfully implemented. While Robinson’s system does obey a transfer

principle, Sergeyev is sparing in acknowledging his debt to Robinson.

Thus, in his keynote address in Las Vegas ’15, Sergeyev declares that

The new computational methodology is not related to the non-standard analysis and

gives the possibility to execute computations of a new type simplifying fields of

Mathematics where the usage of infinity and/or infinitesimals is required. (Sergeyev

2015b) (emphasis added)

This strikes us as a somewhat economical way of acknowledging intellectual indebt-

edness. It is as if someone proclaimed himself to be the inventor of relativity theory and

declared that his ‘‘methodology is not related to’’ the work of Albert Einstein.

Sergeyev’s infringement on Robinson’s framework appears to be tolerated by the

decision-makers in the mathematics community, in a way that would not be tolerated if the

infringement were in a field like differential geometry or Lie theory. An infringement upon

2 The English word pathos is etymologically related to p�aho1, passion.
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Robinson’s framework is tolerated at least in part because the field created by Robinson

has been marginalized, not least through the (combined) efforts of Paul Halmos and Errett

Bishop (see e.g., Katz and Katz 2011, 2012; Kanovei et al. 2015a), and of Connes (see

Kanovei et al. 2013; Katz and Leichtnam 2013). As a result, a number of Robinson’s

students were unable to obtain positions at PhD-granting institutions in the 1970s. An

additional factor seems to be Robinson’s apparent insistence that logic has to take a more

prominent place in graduate programs in mathematics, provoking animosity on the part of

some mathematicians.

Robinson’s framework is a fruitful modern research area that has attracted many

researchers. Thus, Terry Tao developed certain arguments on approximate groups

exploiting ultraproducts that would be difficult to paraphrase without them. The ultra-

products form a bridge between discrete and continuous analysis, and enable a unified

framework for a treatment of both Hilbert’s fifth probem and Gromov’s theorem on groups

of polynomial growth; see Tao (2014) for details.

4 Comparison with Work by Other Scholars

In this section we will compare Sergeyev’s work with that of other scholars, in chrono-

logical order.

4.1 Levi-Civita Fields

David Tall used Levi-Civita fields under the name superreal to popularize teaching cal-

culus via infinitesimals in (Tall 1979). Levi-Civita fields is a classical topic with a long

history. It was studied in (Robinson and Lightstone 1975). Sergeyev exploits his grossone

in place of the variable x in the Levi-Civita fields with the lexicographic ordering, but

comments that

Levi-Civita numbers are built using a generic infinitesimal e ...whereas our numerical

computations with [in]finite quantities are concrete and not generic. (Sergeyev

2015c, p. 2) (emphasis added)

Two years earlier, Sergeyev compared the concrete grossone numeral to Levi-Civita in the

following terms (we make no attempt to correct the grammar):

5 At the first glance the numerals (7) can remind numbers from the Levi-Civita field

(see [20]) that is a very interesting and important precedent of algebraic manipula-

tions with infinities and infinitesimals. However, the two mathematical objects have

several crucial differences. They have been introduced for different purposes by

using two mathematical languages having different accuracies and on the basis of

different methodological foundations. In fact, Levi-Civita does not discuss the dis-

tinction between numbers and numerals. His numbers have neither cardinal nor

ordinal properties; they are build [sic] using a generic infinitesimal and only its

rational powers are allowed; he uses symbol 1 in his construction; there is no any

numeral system that would allow one to assign numerical values to these numbers; it

is not explained how it would be possible to pass from ...a generic infinitesimal h to a

concrete one (see also the discussion above on the distinction between numbers and

numerals). In no way the said above should be considered as a criticism with respect

to results of Levi-Civita. The above discussion has been introduced in this text just to

The Mathematical Intelligencer Flunks the Olympics

123

Author's personal copy



underline that we are in front of two different mathematical tools that should be used

in different mathematical contexts. (Sergeyev 2013, p. 10671, note 5) (emphasis

added)

Sergeyev’s use of the terms numeral (both as adjective and noun) and numerical is vague.

Certainly real numbers cannot be used in computer implementations, and one needs to

work instead with a specific representation such as decimals. Shamseddine and his

colleagues are surely aware of this in their work with the Levi-Civita fields (see Sect. 4.2).

Sergeyev has a talent for turning pathos3 into patent. Affected pathos was also char-

acteristic of the superior ideology of the former Soviet Union where he was raised. Ser-

geyev seems to have learned the lesson of the rhetorical effectiveness of superior ideology.

Levi-Civita may have done the same mathematics a hundred years earlier than Sergeyev,

but the former says a mere x and the latter says a superior ‘‘numeral’’, ergo the latter is on

so much higher an ideological plane.

4.2 Shamseddine’s Work on Levi-Civita Fields

A group of researchers around K. Shamseddine have been developing software based on

the Levi-Civita field for handling certain calculations with infinity and infinitesimals; see

e.g., the article Shamseddine (2015) and http://www.bt.pa.msu.edu/index_cosy.htm.

These scholars typically refrain from assorting their work with the kind of rhetoric that

typically accompanies a Sergeyev performance, such as:

1. Sergeyev does not acknowledge properly indebtedness to Robinson, particularly in the

matter of the transfer principle (see Sect. 2), painting himself as a pioneer in the area.

2. Sergeyev does not acknowledge properly that what he is working with is a version of

the classical Levi-Civita fields, seeking to emphasize what he claims to be the novelty

of his system.

3. Sergeyev seeks to spice up his writing with an assortment of colorful principles that

have little bearing on an actual computer implementation, such as his stylized

insistence on the part being less than the whole.

With regard to this last point, Benci and di Nasso (2003) developed a mathematical theory

of numerosities to express this idea mathematically, but its Sergeyevan incarnation seems

to have little mathematical content.

4.3 Kauffman on �

L. Kauffman is a leading topologist today. The Kauffman bracket Kauffman and Lins

(1994) is a staple of three-manifold invariants. His article ‘‘Infinite computations and the

generic finite’’ Kauffman (2015a) uses Sergeyev’s notation �. Sergeyev managed to cite

this recent paper of Kauffman’s already in three texts. Thus, Sergeyev sends the reader to

Kauffman (and other texts) ‘‘In order to see the place of the new approach in the historical

panorama of ideas dealing with infinite and infinitesimal’’ (Sergeyev 2016, p. 24). How-

ever, Kauffman himself clearly distances himself from Sergeyev’s ‘‘methodology’’ in the

following terms:

In my paper about the Grossone, I point out that the logic of this formalism is

identical (in my version) to using 1 þ xþ x2 þ . . .þ xG as a finite sum with G a

3 See our etymological comment in footnote 2.
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generic positive integer. One can then manipulate the series and look at the limiting

behaviour in many cases. There is no need to invoke any new concepts about infinity.

This point of view may be at variance with the interpretations of Yaroslav [Sergeyev]

for his invention, but I suggest that this is what is happening here. (Kauffman 2015b)

In no way can Kauffman’s work or comments be interpreted as support for Sergeyev. Nor

does Kauffman place Sergeyev ‘‘in the historical panorama’’ etc., contrary to Sergeyev’s

claim. Quite the opposite, Kauffman writes that ‘‘[t]here is no need to invoke any new

concepts about infinity,’’ thereby placing Sergeyev squarely outside a ‘‘historical panorama

of ideas dealing with the infinite.’’

5 The Hyperreal Extension

In an approach to analysis within Robinson’s framework, one works with the pair R � �R
where R is the usual ordered complete Archimedean continuum, whereas �R is a proper

extension thereof. A proper extension of the real numbers could be called a Bernoullian

continuum, in honor of Johann Bernoulli who was the first systematically to use an

infinitesimal-enriched continuum as the foundation for analysis. For historical background

see Borovik and Katz (2012), Bair et al. (2013), Bascelli et al. (2014), Kanovei et al.

(2015b). The extension �R obeys the transfer principle (see Sect. 2).

The field �R is constructed from R using sequences of real numbers. The main idea is to

represent an infinitesimal by a sequence tending to zero. One can get something in this

direction without reliance on any nonconstructive foundational material. Namely, one

takes the ring of all sequences, and quotient it by the equivalence relation that declares two

sequences to be equivalent if they differ only on a finite set of indices.

The resulting object is a proper ring extension of R, where R is embedded by means of

the constant sequences. However, this object is not a field. For example, it has zero

divisors. But if one quotients it further in such a way as to obtain a field (by extending the

kernel to a maximal ideal), then the quotient will be a field, called a hyperreal field.

To motivate the construction further, it is helfpul to analyze first the construction of R

itself using sequences of rational numbers. Let QN
C denote the ring of Cauchy sequences of

rational numbers. Then

R ¼ QN
C =MAX ð5:1Þ

where ‘‘MAX’’ is the maximal ideal in QN
C consisting of all null sequences (i.e., sequences

tending to zero).

The construction of a Bernoullian field can be viewed as refining the construction of the

reals via Cauchy sequences of rationals. This can be motivated by a discussion of rates of

convergence as follows. In the above construction, a real number u is represented by a

Cauchy sequence hun : n 2 Ni of rationals. But the passage from huni to u in this con-

struction sacrifices too much information. We seek to retain some of the information about

the sequence, such as its ‘‘speed of convergence’’. This is what one means by ‘‘relaxing’’ or

‘‘refining’’ the equivalence relation in the construction of the reals from sequences of

rationals.

When such an additional piece of information is retained, two different sequences,

say huni and hu0ni, may both converge to u 2 R, but at different speeds. The corresponding

‘‘numbers’’ will differ from u by distinct infinitesimals. If huni converges to u faster than
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hu0ni, then the corresponding infinitesimal will be smaller. The retaining of such additional

information allows one to distinguish between the equivalence class of huni and that

of hu0ni and therefore obtain distinct hyperreals infinitely close to u. For example, the

sequence h 1
n2i generates a smaller infinitesimal than h1

n
i.

A formal implementation of the ideas outlined above is as follows. Let us present a

construction of a hyperreal field �R. Let RN denote the ring of sequences of real numbers,

with arithmetic operations defined termwise. Then we have

�R ¼ RN=MAX ð5:2Þ

where ‘‘MAX’’ is a suitable maximal ideal. What we wish to emphasize is the formal

analogy between (5.1) and (5.2). In both cases, the subfield is embedded in the superfield

by means of constant sequences.

We now describe a construction of such a maximal ideal exploiting a suitable finitely

additive measure m. The ideal MAX consists of all ‘‘negligible’’ sequences huni, i.e.,

sequences which vanish for a set of indices of full measure m, namely,

m
�
fn 2 N : un ¼ 0g

�
¼ 1:

Here m : PðNÞ ! f0; 1g (thus m takes only two values, 0 and 1) is a finitely additive

measure taking the value 1 on each cofinite set,4 where PðNÞ is the set of subsets of N.

The subset Fm � PðNÞ consisting of sets of full measure m is called a free ultrafilter.

These originate with Tarski (1930). The construction of a Bernoullian continuum outlined

above was therefore not available prior to that date.

The construction outlined above is known as an ultrapower construction. The first

construction of this type appeared in Hewitt (1948), as did the term hyper-real. The

transfer principle (see Sect. 2) for this extension is an immediate consequence of the

theorem of Łoś; see Łoś (1955).

6 A Detailed Technical Report on GOT

The analysis presented in this section is an extension of the report (Gutman and Kutate-

ladze 2008). We formulate our analysis in the framework of Nelson’s Internal Set Theory

(IST) first presented in Nelson (1977).

The difference between Nelson’s approach and Robinson’s can be illustrated in the

context of the underlying number system as follows. Robinson extended the real number

field to a hyperreal number field with infinitesimals (for example, by the ultrapower

approach of Sect. 5). In contrast with Robinson’s approach, Nelson proceeded axiomati-

cally and revealed both infinitesimals and illimited numbers within the real number field

itself.5 To this end, Nelson introduced a new one-place predicate ‘‘to be standard’’ together

with the appropriate axioms. Both Nelson’s and Robinson’s theories are conservative

4 For each pair of complementary infinite subsets of N, such a measure m ‘‘decides’’ in a coherent way
which one is ‘‘negligible’’ (i.e., of measure 0) and which is ‘‘dominant’’ (measure 1).
5 This point seems to have escaped Sergeyev, who claims it to be an advantage of the grossone system that
the infinite numbers are found within N, allegedly unlike nonstandard analysis; see Calude and Dinneen
(2015, p. 95, note 3). Elsewhere Sergeyev claims that, on the contrary, � is ‘‘the number of elements in N’’,
leading to a circularity already mentioned in footnote 1.
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extensions of the traditional foundational framework of the Zermelo–Fraenkel set theory.

For further discussion see Katz and Kutateladze (2015).

6.1 Logical Status of Sergeyev’s Theory

Sergeyev’s reasoning is not only informal but often vague and inaccurate. The inaccuracies

include his definition of the grossone as ‘‘the number of elements in set of natural num-

bers’’ (which may appeal to the uneducated but mathematically speaking is nonsensical), as

well as his delphic pronouncements as to ‘‘the whole being greater than the part’’ and the

distinction between ‘‘numbers and numerals’’ (see Sect. 4.1). Such superfluous PATHOS

needs to be removed before a consistent theory can be identified. A reader with some

mathematical culture can give formal shape to Sergeyev’s postulates, as done in Gutman

and Kutateladze (2008) to some extent. The result is a formal theory of signature

S ¼
�
¼;2;�

�

(here 2 is the membership relation while � is the grossone). We will abbreviate the theory

as GOTnPATHOS. Here ‘‘GOT’’ stands for GrossOne Theory, while ‘‘PATHOS’’ alludes

to the inconsistencies of Sergeyev’s system and his efforts to sweep them under the rug by

means of le flou artistique via affected pathos or passionate enthusiasm; see Sect. 4.1.

Thus, GOTnPATHOS is the axiomatic formal theory in the language of signature S whose

axiomatic background is given by all of Sergeyev’s postulates, both explicitly stated and

implicitly assumed in his papers.

Fact 6.1 Each axiom of GOTnPATHOS is a trivial consequence of the axioms of any

classical nonstandard set theory, provided � is understood as the factorial of an infinitely

large integer.

This is shown in Gutman and Kutateladze (2008). In particular, the axioms of

GOTnPATHOS are easily proven in Nelson’s IST, with � evaluated as the factorial of an

arbitrary infinitely large natural number. Therefore,

Fact 6.2 The theory GOTnPATHOS is weaker than IST.

By definition, the theory is weaker whenever is has fewer theorems. Note that, for

formal theories, weaker does not mean worse; nor does stronger mean better. For instance,

a theory whose theorems are all the statements, i.e., an inconsistent theory, is the strongest

one, but it is hardly the best one. Nevertheless, in certain circumstances, a weaker theory

cannot be regarded as new as compared to a stronger theory.

Fact 6.3 GOTnPATHOS is not a new theory.

Indeed, GOTnPATHOS is weaker than a well-known theory, IST, and moreover, the

axioms of GOTnPATHOS are easily proven in IST. Consequently, any reasoning within

GOTnPATHOS can be automatically converted into the corresponding and almost iden-

tical reasoning in IST. In particular, GOTnPATHOS cannot prove any new result, since

each result proven in GOTnPATHOS is already a result of a well-known theory. Actually,

even proofs within GOTnPATHOS cannot be new, since every such proof is almost

identical to an automatically produced proof in a well-known theory.

Fact 6.4 GOTnPATHOS is dramatically weaker than IST.
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It suffices to note that IST features a powerful and fruitful tool known as the Transfer

Principle (see Sect. 2), which is absent from the theory GOTnPATHOS. In addition,

GOTnPATHOS has no analogs of Idealization and Standardization Principles, which

makes it almost impossible to prove any serious assertion in GOTnPATHOS without

appealing to informal or implicit assumptions.

Fact 6.5 Consistency of GOTnPATHOS is not justified by its originator.

In many of Sergeyev’s papers, one cannot find a single attempt formally to justify the

consistency of the grossone theory. Only due to Gutman and Kutateladze (2008) do we

know that GOTnPATHOS is consistent relative to IST (see also Vakil 2012). Furthermore,

employing the fact that IST is consistent relative to ZFC (see Nelson’s article Nelson 1977)

and that ZFC is consistent relative to ZF (a result of Goedel’s; see his constructible

universe Goedel 1938), we may conclude that GOTnPATHOS is consistent relative to the

standard set theory (this is however not surprising, since GOTnPATHOS is weaker than a

well-known relatively consistent theory).

It is good to know which facts a theory can prove, but for a theory to be useful it also

very important to know which facts it cannot prove. To become a generally accepted

legitimate mathematical tool, a theory should be unable to prove strange or pathological

results. The corresponding formal property of a theory is called conservativity.

By definition, a theory T* of signature S* is a conservative extension of a weaker theory T

with smaller signature S whenever T* has exactly the same theorems in signature S as T has.

Suppose that we have a generally accepted theory T (say, ZFC) and let a new theory T* (say,

IST) extend T and introduce new primary notions (in our example, the notion of standard set).

The fact that T* is a conservative extension of T means the following: if T* allows us to prove

some result R and R does not involve new primary notions, then R is not pathological, as it can

also be proven in the generally accepted theory T. Therefore, any conservative extension of a

customary theory can be (and should be) accepted as a legitimate mathematical tool. Namely,

it has the same deduction strength and every sensible fact it can prove can be proven by usual

means, without any new axioms or new notions.

IST is known to be a conservative extension of ZFC, as shown by Powell’s theorem

presented in Nelson (1977). This nontrivial and very important fact makes IST a generally

accepted mathematical theory.

Fact 6.6 The question of conservativity of GOTnPATHOS is ignored by its originator.

Again, only due to Gutman and Kutateladze (2008) do we know that GOTnPATHOS is

weaker than IST, which, in its turn, is a conservative extension of ZFC. Hence, so is

GOTnPATHOS: if a set-theoretic fact can be proven in GOTnPATHOS, it can also be

proven in IST and, thus, in ZFC. Without knowing this, even a consistent theory need not

be accepted.

Therefore, without employing nontrivial facts from contemporary nonstandard analysis,

Sergeyev’s reasoning remains a powerless, informal, weak theory with doubtful consis-

tency, which cannot be generally accepted due to its doubtful conservativity. On the other

hand, if we employ the facts from nonstandard analysis, the grossone theory turns out to be

merely a powerless and weak theory which cannot be regarded as new.

6.2 Algorithmic Status of Sergeyev’s Theory

An algorithmic problem is the task of finding an algorithm which, given a constructive

object as input, produces a constructive object as output so that the output is related to the
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input in a desired way, and this fact is provable within a suitable theory under consider-

ation. Therefore, solvability and complexity of an algorithmic problem depends on the

underlying theory.

A solution to an algorithmic problem is an algorithm supplied with a justification, i.e.,

with a proof (within a theory) of the assertion that the algorithm works correctly and

actually solves the problem. On the other hand, a weaker theory has fewer proofs (which is

a direct consequence of the definition) and thus fewer solvable algorithmic problems.

Fact 6.7 Within a weaker theory, there are more unprovable and undecidable statements,

more unsolvable algorithmic problems, while solutions to solvable algorithmic problems

are more complex.

Recalling that GOTnPATHOS is weaker than IST, we conclude the following.

Fact 6.8 Each algorithmic problem unsolvable in IST is similarly unsolvable in

GOTnPATHOS; if an algorithmic problem has a complex solution in IST, it either has an

even more complex solution in the system GOTnPATHOS or is even unsolvable in

GOTnPATHOS.

Furthermore, being a conservative extension of ZFC, IST has exactly the same solvable

set-theoretical problems as ZFC has. This circumstance allows us to derive the following fact.

Fact 6.9 Every unsolvable set-theoretical problem is unsolvable in GOTnPATHOS;

solvable set-theoretical problems are more complex or even unsolvable in GOTnPATHOS.

There is a number of problems listed in Gutman and Kutateladze (2008) which

encounter certain theoretical obstacles to finding an algorithmic solution. Some of the

problems are IST-specific, other are purely set-theoretical or analytical. According to Facts

6.8 and 6.9 we have the following fact.

Fact 6.10 Each of the algorithmic problems enumerated in the article Gutman and

Kutateladze (2008) is either more complex or even unsolvable in GOTnPATHOS.

6.3 Specific Algorithmic Problems Concerning Grossone

Within GOTnPATHOS, the main tool is the ‘‘positional system with base �’’ in which the

role of numerals is played by ‘‘multilevel polynomials’’ in a single variable denoted �,

with rational coefficients and exponents. We will refer to these polynomials as grossnu-

merals. They are multilevel in the sense that the exponents (power indices) need not be

numbers and may also be (multilevel) polynomials. Every grossnumeral has finite height.

Suitable formal definitions are presented in Gutman and Kutateladze (2008) (and are

absent from Sergeyev’s papers).

If we restrict the height of grossnumerals to 1, we obtain the usual polynomials in one

variable. The algorithmic problems in the classical calculus of such polynomials are far

from being new. They are all solved, long ago and completely. Anything new can occur

only under consideration of numerals having arbitrary finite height.

The set of grossnumerals cannot be called a ‘‘calculus’’ unless it is supplied with a set of

algorithms which implement such key operations as reduction to canonical form and com-

parison. Without such algorithms, one cannot speak of any computer realization of the

calculus, either.

The important point here is that the implementation of the basic calculus operations in

the set of grossnumerals encounters certain theoretical obstacles in IST and ZFC.
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According to Sect. 6.2, they encounter even more serious problems in the weaker

GOTnPATHOS. The issues are thoroughly described in Gutman and Kutateladze (2008),

and the main problem is as follows.

Fact 6.11 There is no known algorithm that, given grossnumerals x and y, would

determine which of the following holds true: x\y, x ¼ y, or x[ y.

The latter problem must be solved in order to be able to speak of a calculus, for otherwise

we would not be able to perform such elementary procedures as reducing similar terms or

listing the terms in descending order by their degree. Nevertheless, algorithmic solvability of

these procedures remains unknown. The corresponding hypothesis is based on rather non-

trivial facts on o-minimality and decidability of the order structure of reals with exponent (see

bibliographic references [11] and [13] in Gutman and Kutateladze 2008).

Thus, currently there is no algorithm able to compare grossnumerals or, for that matter,

to check the inequalities

1\�
�

�1

\2:

Such an algorihm could hardly appear in any of Sergeyev’s papers. Indeed, he provides the

following characterisation of infinite numbers: ‘‘Infinite numbers in this numeral system

are expressed by numerals having at least one grosspower grater [sic] than zero’’. Sergeyev

(2007, p. 60). But the grossexponent �-1 is indeed greater than zero; yet the number ��
�1

must be infinitely close to 1 if even a most rudimentary form of the transfer principle (see

Sect. 2) is to be satisfied. Yet according to Sergeyev’s characterisation, ��
�1

would turn

out to be ‘‘infinite’’. Whenever Sergeyev’s assertions are specific enough to be checked,

one finds errors, including freshman calculus level errors.

This particular error appeared in ‘‘Blinking fractals’’ Sergeyev (2007) published in

Chaos, Solitons, and Fractals, and was subsequently criticized in Gutman and Kutateladze

(2008). Sergeyev blinked and modified his text in a number of online databases, so as to

remove the error, including its current ResearchGate version. As of 2015, no official

correction whatsoever appeared in Chaos, Solitons, and Fractals.

This episode indicates how far removed the questions under consideration are from any

computer implementation. The comparison problem is completely ignored in Sergeyev’s

papers, and this is not surprising: the problem is challenging even in IST, while in

GOTnPATHOS it is much more complex due to the absence of a suitable transfer principle.

With the above taken into account, it becomes clear why all screenshots of a calculator

presented in Sergeyev’s papers contain only grossnumerals of height 1.

Fact 6.12 An actual grossone calculator does not exist.

Grossnumerals of height 1 are just ordinary polynomials of one variable, and software

for the corresponding calculus is commonplace nowadays. Contemporary symbolic com-

putation packages provide much more sophisticated machinery. The grossone theory is so

poorly designed and underdeveloped that a toy calculator is the only tool which can be

created on its basis.

7 Olympic Ranks Need No ‘‘Numerical Infinities’’

In his note ‘‘The Olympic medals, ranks, lexicographic ordering, and numerical infinities,’’

Sergeyev represents the basics of grossone theory (as he does in each of his numerous

papers containing the symbol �) under the pretext of applying it to a ‘‘mathematical
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problem’’ related to the lexicographic ranking method. The problem is caused by the fact

that, contrary to other known ranking methods, the lexicographic method does not assign

numerical ranks to various medal distributions, it only orders them, i.e., determines which

distribution is higher and which is lower. Sergeyev suggests using grossnumerals as

‘‘numerical’’ ranks of arbitrary medal distributions and emphasizes that his suggestion

solves the problem without upper bounds on the number of medals awarded by a single

country as well as on the number of the medal classes (gold, silver, etc.).

We will demonstrate that the approach suggested by Sergeyev is useless and any

application of a theory infinite numbers is overkill for such a trivial aim. Indeed, the

lexicographic order can be made numerical in a very easy, reasonable, and practical way

by means of ordinary standard rational numbers.

Suppose that there are infinitely (but countably) many medal classes. List them in

descending order and associate with successive natural numbers: 1 for ‘‘gold’’, 2 for ‘‘sil-

ver’’, 3 for ‘‘bronze’’, 4, 5, 6, etc. for all the rest. Each competitor can win an arbitrary finite

set of medals which can be encoded by a finite word with positive integers as ‘‘letters’’. For

instance, the word w ¼ h5; 0; 12; 1i encodes the fact that a competitor has won 5 medals of

class 1, 0 medals of class 2, 12 medals of class 3, 1 medal of class 4, and 0 medals of any

other class. The task is to invent a practical method (an algorithm) of calculating a num-

ber R(w) for any word w in such a way that the equality RðuÞ[RðvÞ be equivalent to u � v,

where � is the lexicographic order on words:

u � v , u1 ¼ v1; . . .; un�1 ¼ vn�1; un [ vn for some n:

(Here wn is the nth letter of a word w, with wn ¼ 0 for n greater than the length of w.)

The method proposed by Sergeyev consists in defining the ‘‘numerical’’ rank RSðwÞ of

a word w ¼ hw1; . . .;wLi of length L as the grossnumeral

RSðwÞ ¼ w1�
L�1 þ w2�

L�2 þ � � � þ wL�1�
1 þ wL�

0:

How useful is such a solution, however? Sergeyev regards RSðwÞ as a ‘‘numerical’’ rank

just because it is a ‘‘number’’ in the sense of his grossone theory. Both theoretically and

practically, this is nothing but a mere replacement of a word hw1; . . .;wLi with a more

bulky expression of the form w1�
L�1 þ � � � þ wL�

0. This expression cannot be written in

any other numerical form and cannot be used in any software other than the hypothetical

‘‘Infinity Calculator’’ based on the mythical ‘‘Infinity Computer technology’’.

We will now indicate a very simple and honest method of solving the above-stated

‘‘problem’’. Note first that, for the aim under consideration, there is no need for any

artificial numbers, and the standard rational numbers with their standard order are

undoubtedly sufficient. This is so because, as is well known, every countable linear order

embeds into the standard ordered set of rationals, and this is true, in particular, for the

lexicographically ordered set of words which represent medal distributions. So, the task is

merely in choosing a specific order-preserving rational encoding of the words. The

encoding can be as simple as follows. Given a word w ¼ hw1; . . .;wLi, set

RðwÞ ¼
XL

n¼1

2�ðw1þ���þwn�1þn�1Þ
Xwn

m¼1

2�m:

Here RðwÞ 2 ½0; 1Þ is the rational number whose binary representation (representation in

the positional numeral system with base 2) has the form
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0:11. . .1|fflfflffl{zfflfflffl}
w1 ones

011. . .1|fflfflffl{zfflfflffl}
w2 ones

0 . . . 011. . .1|fflfflffl{zfflfflffl}
wL ones

:

It is an easy exercise to show that the encoding R meets the required condition, i.e.,

assigns greater ranks R(w) to lexicographically greater words w. Note also that medal

distributions are uniquely (and easily) determined by their numerical ranks. It is also worth

observing that R reflects certain emotional aspects related to medals wins: the awarding of

the first medal of a given class is felt as a more exciting and significant achievement than

awarding the second one, and so on. This circumstance results in the fact that the medal

distributions with close numerical ranks are also ‘‘psychologically’’ close.

As an illustration, we present the 2014 Winter Olympics medal table of competitors (in

lexicographic order) and their medal distributions supplemented with the corresponding

exact binary ranks, and approximate decimal ranks.

2014 Winter Olympics medal table

Country Medals Binary Decimal

Russia 13 11 9 0.11111111111110111111111110111111111 0.9999389

Norway 11 5 10 0.1111111111101111101111111111 0.9997520

Canada 10 10 5 0.111111111101111111111011111 0.9995114

United States 9 7 12 0.111111111011111110111111111111 0.9990196

Netherlands 8 7 9 0.11111111011111110111111111 0.9980392

Germany 8 6 5 0.111111110111111011111 0.9980311

Switzerland 6 3 2 0.1111110111011 0.9915771

Belarus 5 0 1 0.11111001 0.9726562

Austria 4 8 5 0.1111011111111011111 0.9686870

France 4 4 7 0.11110111101111111 0.9677658

Poland 4 1 1 0.11110101 0.9570312

China 3 4 2 0.11101111011 0.9350585

South Korea 3 3 2 0.1110111011 0.9326171

Sweden 2 7 6 0.11011111110111111 0.8745040

Czech Republic 2 4 2 0.1101111011 0.8701171

Slovenia 2 2 4 0.1101101111 0.8583984

Japan 1 4 3 0.1011110111 0.7412109

Finland 1 3 1 0.1011101 0.7265625

Great Britain 1 1 2 0.101011 0.6718750

Ukraine 1 0 1 0.1001 0.5625000

Slovakia 1 0 0 0.1 0.5000000

Italy 0 2 6 0.0110111111 0.4365234

Latvia 0 2 2 0.011011 0.4218750

Australia 0 2 1 0.01101 0.4062500

Croatia 0 1 0 0.01 0.2500000

Kazakhstan 0 0 1 0.001 0.1250000

A. E. Gutman et al.

123

Author's personal copy



8 Publication Venue

This rebuttal did not appear in the journal The Mathematical Intelligencer where Ser-

geyev’s note originally appeared because five successive versions of our rebuttal were

rejected by that journal, in spite of at least one favorable referee report.

9 Conclusion

The Olympic medals ranking was considered in Sergeyev’s note in The Mathematical

Intelligencer without any serious mathematical treatment. The note’s shortcomings include

serious issues of attribution of prior work.
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